
Selling Multiple Complements with Packaging Costs

Simon Finster1

1CREST-ENSAE and Inria/FairPlay, simon.finster@ensae.fr

15 January 2025

Abstract

We consider a package assignment problem with multiple units of indivisible

items. The seller can specify preferences over partitions of their supply between

buyers as packaging costs. We propose incremental costs together with a graph

that defines cost interdependence to express these preferences. This facilitates the

use of linear programming to characterize Walrasian equilibrium prices. Firstly, we

show that equilibrium prices are uniform, anonymous, and linear in packages. Prices

and marginal gains exhibit a nested structure, which we characterize in closed form

for complete graphs. Secondly, we provide sufficient conditions for the existence of

package-linear competitive prices using an ascending auction implementation. Our

framework of partition preferences ensures fair and transparent dual pricing and ad-

mits preferences over the concentration of allocated bundles in the market.

Keywords: package assignment, non-linear pricing, Walrasian equilibrium, parti-

tion preferences, value graph, linear programming
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1 Introduction

In many markets, buyers express preferences for bundles of indivisible items, and the seller

cares about how items are bundled. So far, despite attested real-world preferences, e.g., caps

on the number of licenses in wireless spectrum auctions (Cramton et al. 2011, Kasberger 2023,
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Myers 2023), the economic literature has not addressed competitive equilibrium with preferences

over the partitioning of a supply of indivisible goods. A key challenge is the representation of

such preferences, as their domain, the space of supply partitions, is much larger than the space

of bundles. Moreover, with indivisible goods, the existence of Walrasian equilibria is guaranteed

only under specific assumptions (see, e.g., Bikhchandani & Mamer (1997), Gul & Stacchetti

(1999), Sun & Yang (2006), Milgrom & Strulovici (2009)).

This article proposes a framework to express partition preferences. We show that Walrasian

equilibria in our market are supported by uniform and anonymous prices that are linear in

packages and reflect the nested structure of the seller’s partition preferences. Furthermore, we

provide conditions for the existence of Walrasian equilibria. Our setting is a competitive mar-

ket for multiple copies of multiple indivisible goods, including a set of buyers with values over

bundles of items and a seller with preferences over partitions of their supply between buyers.

We impose some structure on the seller’s preferences with two objectives: we aim to obtain

Walrasian equilibria that do not require personalized pricing while allowing the seller to ex-

press general preferences over the concentration of their allocated supply. To do so, we propose

incremental cost functions which specify the cost (savings) of combining two or more items

for assignment to a single buyer, together with a graph structure defining cost interdependen-

cies between bundles. Buyers have a rich set of preferences over bundles that can incorporate

complements and substitutes.

In our market, the seller cares about whether any two or more items are allocated to separate

buyers or, packaged, to a single buyer. Thus, we name the associated costs packaging costs.

Consider, for example, the reallocation of land plots to farmers via an auction. The government

favors the allocation of two complementary land plots as a bundle to encourage defragmentation

(cf. Bryan et al. (2024)). However, it wishes to allocate the two land plots separately if individual

buyers have sufficiently high values. In our framework, it can do so by defining negative packaging

costs, offering the bundle more cheaply than the sum of costs of the items contained.1 A small

number of highly productive plots the government wishes to sell separately for fairness reasons,

which can be expressed as positive packaging costs. Because an assigned bundle may affect

the cost of other bundles, e.g., if they contain items of the same variety, the seller’s overall

cost depends on the entire partitioning of their supply. Applications for our framework are

also found in procurement, the insurance industry, the transport sector, or wireless spectrum

auctions.2 In practice, sellers often wish for flexibility in shaping the market outcome; e.g., the

Bank of England can express complex supply curves for allocating loans to commercial banks

(Klemperer 2008, 2010, 2018).

The market objective is to find a socially efficient bundling of the seller’s supply and assign-

ment of bundles to buyers. For buyers, we allow substitute trade-offs between any bundles, thus

1This can also be interpreted as an indirect subsidy. Selling biodiversity conservation contracts (e.g., Stoneham
et al. (2003)), one may wish to subsidize bundles if contracts implemented on the same land are synergetic.

2In a procurement market with multiple suppliers, the buyer has partition preferences: a single supplier may
be preferred for machine maintenance and employee training. Decision support systems used in practice allow for
different types of discounts and sophisticated bids (Giunipero et al. 2009, Bichler et al. 2011). Bichler et al. (2011)
propose a bidding language that allows various types of discounts on bundles, but not in the context of Walrasian
equilibrium. In the insurance industry, the risk between bundled products is interdependent. Representing such
interdependencies while maintaining tractability is a key challenge in the partitioning problem. For transport
sector auctions, see, e.g., Cantillon & Pesendorfer (2005), and for spectrum auctions, e.g., Cramton et al. (2011).
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also allowing complements. If a buyer is assigned a collection of bundles, their value corresponds

to its value-maximal matching to fictitious unit-demand agents, where each unit-demand agent

is matched with at most one bundle.

For our first set of results, we construct the social welfare maximization problem embedding

the graph structure that is part of the seller’s partition preferences into an integer program.

We characterize dual prices and show that they satisfy the desired properties of uniformity,

anonymity, and linearity in packages.3 We prove that this pricing function supports a competi-

tive equilibrium and that the integrality of a solution to the linear relaxation of the social welfare

maximization problem is equivalent to the existence of competitive equilibria. The classical re-

sults of Bikhchandani & Mamer (1997) and Bikhchandani & Ostroy (2002) are not applicable

because our seller’s cost function depends on the entire partition sold. Thus, the buyers’ values

and the seller’s costs must be considered separately, in contrast to, e.g., simply additive costs

between items. To embed the graph structure into the social welfare maximization problem,

we provide an algorithm that represents the graph’s characteristic function, which uniquely

maps supply partitions to their associated costs. For complete graphs, we derive a closed-form

expression of the characteristic function.

In our second set of results, we provide sufficient conditions for the existence of competitive

equilibria and establish a duality between revenue-maximizing and utility-maximizing sellers.

We show that if the seller’s partition preferences only involve (weakly) negative packaging costs,

i.e., she prefers coarser partitions of her supply, and buyers have (weakly) superadditive values,

i.e. items are weak complements, a package-linear Walrasian equilibrium exists. This generalizes

a result of Sun & Yang (2014), who establish equilibrium existence when buyers and the seller

have superadditive values. We also prove a duality relation between the objectives of a (value-

based) revenue-maximizing and a (cost-based) utility-maximizing seller. Moreover, we establish

the notion of set-cover submodularity (Definition 10), a weaker requirement than submodularity

and show that the objective of a revenue-maximizing seller with superadditive values is equiv-

alent to that of a utility-maximizing seller with set-cover submodular costs without partition

preferences.

Our framework of partition preferences implies new market design applications. The cost

function graph we introduce facilitates modeling a wide range of cost interdependencies between

related packages. For example, the bundle ABC may be more expensive if several copies of

AB are sold as well, but it may be independent of the bundles of type AC. Furthermore, our

incremental costs can encourage or discourage bundle allocation, but always provide flexibility

to bundle in the opposite way, i.e., to sell items separately or together, if demand requires it.

To illustrate this, consider the seller in a spectrum auction with concerns about an asymmetric

distribution of licenses between buyers (Ofcom 2017, GSMA 2021). Such preferences would

commonly be expressed through (hard) spectrum caps, i.e., each bidder can win at most a fixed

number of licenses for each frequency band (Cramton 2013, Kasberger 2023). Although caps

are typically set to mitigate market power in the downstream market, “their drawback is that

they may prohibit efficient aggregation of spectrum” (Cramton et al. 2011). The auctioneer can

3Under package-linear pricing, the same price applies to identical packages, and the price of a collection of
several packages equals the sum of prices of the packages contained in the collection. A package-linear pricing
function is non-linear in items, i.e., the price of a package need not be the sum of prices of the contained items.
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implement softer caps with our incremental cost structure, by penalizing bundle allocations with

higher packaging costs. A buyer could then still obtain a bundled set of licenses, but the soft

caps would require their bundle value to be high enough to outweigh the seller’s preference for

less market concentration. More generally, an auctioneer or regulator can steer market outcomes

towards their preferred allocation using our cost structure, where hard caps are a special case

corresponding to prohibitively high costs for certain bundles.

Our buyer preferences generalize assignment valuations (Shapley 1962, Shapley & Shubik

1971) and those admissible in the Product-Mix Auction with positive bids in that our buyers

express substitute trade-offs between bundles instead of items (see Baldwin et al. (2024) for

more detail on the Product-Mix bidding languages). Combinatorial preferences also appear in

the early package auction iBundle (Parkes 1999), with a comprehensive account given, e.g., in

Nisan (2000) and Lehmann et al. (2006) (see also Section 2.2 and the discussion in Section 5).

Product-Mix auctions implement a Walrasian equilibrium assuming competitive behavior of

participants. In the same way, our market can be implemented as a sealed-bid auction if agents

act (approximately) as price takers and truthfully submit their preferences. The buyers’ values

and the seller’s incremental cost functions and admissible graph structures are parsimonious in

the vast space of partitions. In markets for weak complements with negative packaging costs,

we provide an implementation as an ascending auction. Our extended ascending auction strictly

generalizes the ascending auction by Sun & Yang (2014), allowing a revenue-maximizing seller

and an auctioneer with partition preferences.

Walrasian equilibrium in markets in which agents view some or all items as complementary

have been studied, e.g., by Sun & Yang (2006) and Teytelboym (2014), who establish equilibrium

existence results, and by Sun & Yang (2009), who develop a Walrasian tâtonnement process.

Baldwin & Klemperer (2019) introduce the concept of demand types and establish with their

unimodularity theorem the existence of a Walrasian equilibrium for many classes of complements

and substitutes preferences. Furthermore, Candogan et al. (2015) show the existence of a linear

pricing Walrasian equilibrium for the class of sign-consistent tree valuations4 and Candogan

et al. (2018) study pricing equilibria when buyers have graphical valuations. In all of those

studies, partition preferences over the market supply are not considered. We note that partition

preferences with negative packaging costs as well as buyers’ superadditive values are orthogonal

to the well-known classes of gross substitutes (Kelso & Crawford 1982) and strong substitutes

(Milgrom & Strulovici 2009) which admit a linear-pricing Walrasian equilibrium.

The remainder of this article is structured as follows. In Section 2, we describe our market

and the partition preference framework. In Section 3, we show the desired properties of the

equilibrium pricing function and characterize Walrasian equilibria. In Section 4, we prove suffi-

cient conditions for the existence of a Walrasian equilibrium and explore the dual relationship

between revenue-maximizing and utility-maximizing sellers. Section 5 provides a brief discussion

and Section 6 concludes.

4In this class, each two goods must be either substitutes or complements for all buyers.
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2 The Competitive Market with Packaging Costs

2.1 Preliminaries

There are n indivisible, distinguishable varieties (or items) in the economy, identified with

j ∈ N := {1, . . . , n}, with a supply of Ωj units for each variety j ∈ N .

Definition 1 (Package). A package (or bundle) is a subset of N , i.e., an element S ∈ 2N .

Packages allow a single unit of each variety to be bundled together. This is without loss of

generality, since with appropriate labeling packages containing identical varieties can be mapped

to our model (we exemplify this in Appendix B.1). Multisets allow multiple copies of items by

including the multiplicity of elements in their ground set N , where occurrences of the same

element are indistinguishable.5 Denoting by Z+ the set of positive integers including zero, we

define a multiset as a mapping m : N → Z+, and represent it as a vector of the multiplicities of

its elements m := (m(1), . . . ,m(n)). We work mainly with package multisets with ground set

2N , represented by vectors k = (kS1 , . . . , kS2n
) ∈ Z2n

+ where kS denotes the multiplicity of the

package S.

Definition 2 (Feasible multisets). The universe of all feasible package multisets is given by

K :=

k ∈ Z2n

+ :
∑
S∈2N

kS1j∈S ≤ Ωj ∀j ∈ N

 .

A package multiset can also be seen as an anonymous partition in which the elements of

the partition are not labeled. We refer to an anonymous partition simply as partition, and

use package multiset and partition synonymously. If a package multiset, or partition, k can be

identified to a set S (i.e., kS = 1 for exactly one S ∈ 2N and k′S = 0 for all other S′), we will

abuse the formal definition and write k = S for the sake of clarity.

The set of package multisets over 2N can be endowed with basic operations and functions.

Fixing package multisets k and k′, the sum k′′ = k+k′ is defined by k′′S = kS+k
′
S for all S ∈ 2N ,

and scalar multiplication as αk = (αkS)S∈2N for any α ∈ R. The cardinality of k is given by

|k|=
∑

S∈2N kS . The unpacking operator ⋆ unpacks a package multiset k into the multiset of

varieties contained in k so that k⋆ = (mj)j∈N with mj :=
∑

S∈2N kS1j∈S for all j ∈ N .

To simplify notation, we often use implicit summation f(X,Y ) =
∑

x∈X,y∈Y f(x, y) for any

finite sets X and Y . We let [X] := {1, . . . , X}.

2.2 Agents and Preferences

The economy consists of a seller (“she”), denoted 0, and a set of L buyers (“he”) denoted

l ∈ [L] := {1, . . . , L} and we let [L]0 := [L]∪{0}. The preferences of each buyer are specified by

a value function V l : Z2n
+ → Z+ with V l(∅) = 0. If a buyer demands at most one package, the

value function is given by V l : 2N → Z+. Such a buyer is called a “unit-demand agent”, where

the “unit” refers to a package. We restrict V l as follows: each buyer’s value function is the

5See, e.g., Blizard (1989) for a detailed treatment of multisets.
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aggregate of values of a finite number Ql of fictitious unit-demand agents, and Q := maxl∈[L]Q
l.

We sometimes denote by (q, l) the qth unit-demand agent of buyer l.

Definition 3 (Unit demand valuation). The unit-demand valuations of the fictitious agents

associated with buyer l are defined as vl : 2N × Z+ → Z+, where v
l(S, q) is the value of bundle

S for the qth unit-demand agent associated with buyer l.

The value of a buyer V l for a multiset k is obtained by a value-maximizing matching of the

contained bundles to his fictitious unit-demand agents,6 where each fictitious unit-demand agent

is assigned at most one bundle. Formally, we aggregate unit-demand values as follows. Let Sq

be the bundle assigned to unit-demand agent q and eSq ∈ {0, 1}2n be the indicator vector with

value 1 for bundle Sq and value 0 for all other bundles. We assume vl(S, q) = 0 for all q > Ql.

Definition 4 (Unit-demand value aggregation).

V l(k) := max
Sq⊆2N

∑
q∈[Ql]

vl(Sq, q) s.t.
∑

q∈[Ql]

eSq ≤ k.

A pricing function is a function p : Z2n
+ → R with p(0) = 0. It is nonlinear in varieties j ∈ N ,

i.e., for any package S ∈ 2N , we may have p(S) ̸=
∑

j∈S p(j). A pricing function p : Z2n
+ → R

is package-linear if and only if, for all k ∈ Z2n
+ , p(k) =

∑
S∈2N kSp(S). Thus, a package-linear

pricing function can be represented as a mapping p : 2N → R.
Each agent’s utility is quasi-linear and given by ul(k, p) = V l(k) − p(k) when they receive

a package multiset k at package-linear prices p. Note that a buyer who receives a partition

k cannot unpack k (see definition in Section 2.1), i.e., the individual bundles of k are fixed.

Example 1 below illustrates the aggregation of unit-demand values.

Example 1. Consider the sale of two units of good A and two units of good B, which may be

sold separately or in packages. The set {AB} is considered a package. Suppose that there is

one buyer with two corresponding unit-demand buyers. The unit-demand value functions are

given in Fig. 1b and aggregated according to Definition 4. For legibility, here we write multisets

in set notation instead of vectors. We have, e.g., v1({A}) = 3, v1({B}) = 5, v1({A,B}) =

max(3 + 2, 5 + 1) = 6, v1({A,AB}) = 3 + 9, v1({B,AB}) = 5 + 9, and v1({A,B,AB}) =

max(3+2, 5+1, 3+9, 5+9, 1+9, 2+9) = 14. Note that with only two unit-demand buyers, the

third and any further bundles contribute a value of zero. The preferences of unit-demand agent

q = 1 are illustrated in price space in Fig. 1a and represented by the black dot at (3, 5, 9). At

prices beyond the light-blue facets, the agent demands nothing. The remaining area is divided

into three. At prices above the blue and left of the red facet A is demanded, above the green

and right of the red facet B is demanded, and at prices below the blue and the green facet AB

is demanded. On the facets or their intersections, the agent is indifferent between the bundles

demanded in adjacent regions.7

6Such preferences are also known as assignment valuations (Shapley 1962, Shapley & Shubik 1971), and the
value-maximizing matching is sometimes called a maximum-weight matching. In the terminology of Lehmann
et al. (2006), unit-demand valuations are combined by an “inclusive-or”-operation (see also Nisan (2000)). A
generalized version of assignment valuations is the assignment messages in Milgrom (2009). Note that each of our
unit-demand agents may be assigned a bundle of items.

7The demand of multiple unit-demand agents can also be geometrically aggregated. Baldwin & Klemperer
(2019) illustrate this two-dimensional price space (not allowing a separate price for AB).
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(a) Unit demand in price space

q v1(q,A) v1(q,B) v1(q, AB)

1 3 5 9
2 1 2 9

(b) Unit-demand values

Figure 1: Unit-demand values and their representation in price space

The seller’s preferences are over partitions of her supply, specified by the cost function C0.

She has quasi-linear utility u0(k, p) = p(k) − C0(k) from selling the package multiset k at a

prices p. Any package multiset induces a partition of the contained bundles between buyers,

where the identity of the buyers who receive a bundle is irrelevant. We note that, with multi-

unit demand buyers (more than one corresponding unit-demand agent per buyer), there is an

asymmetry in the interpretation of the seller’s preferences: bundling items guarantees that a

single buyer receives the bundle, but separate items may still be received by unit-demand agents

belonging to the same buyer. If the seller cares about the separation of items, only one fictitious

agent per buyer is allowed.

The cost function C0 consists of two elements: (i) incremental costs expressing additional

costs or cost savings from bundling varieties in a package, and (ii) a graph with cost connections

specifying cost interdependencies between related bundles. For single-item packages S with

|S|= 1, incremental costs are simply costs.

Definition 5. A cost function graph (CFG) is a directed graph G = (V,A) with vertices labeled

with elements of 2N representing the distinct packages, and arcs A defining the cost connections

between packages such that (i) if (T, S) ∈ A, then S ⊂ T , and (ii) every package S is connected

to the contained single varieties {j}, j ∈ S.

The CFG is a tree due to property (i). Formally, we say that S1 and St are (cost-) con-

nected and write ∃(S1...St) whenever there exists a sequence of vertices (S1, ..., St) such that

(S1, S2), ..., (St−1, St) ∈ A. Given a path H := (S1, ..., St), |H|= t− 1 denotes the length of path

H. Lastly, node S is connected to itself.

The successors R+
0 (S) := {S′ ∈ 2N :∃(S...S′)} and the strict successors R+(S) := {S′ ∈

2N :∃(S...S′), S′ ̸= S} of package S are sets of packages reachable from S in the CFG. Likewise,

the predecessors R−
0 (S) := {S′ ∈ 2N : ∃(S′...S) and the strict predecessors R−(S) := {S′ ∈

2N :∃(S′...S), S′ ̸= S} of S are sets of packages from which S can be reached. Furthermore,

N+(S) := {S′ ∈ 2N : (S, S′) ∈ A} and N−(S) := {S′ ∈ 2N : (S′, S) ∈ A} are the neighbors, the

direct successors and direct predecessors of S, and N+
0 := N+ ∪ {S} and N−

0 := N− ∪ {S}.
When selling a supply partition, the seller incurs costs related to its individual elements, as

well as their interaction. Each node (package) S in the graph is associated with an incremental

cost function. All predecessors S′ ∈ R−
0 (S) of some node S ∈ 2N are cost-connected to S.

Economically, this means that an incremental cost corresponding to S also contributes to the
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cost of S′. Only bundles that are a subset or superset of each other can be cost-connected

(Definition 5 (i)), and for each bundle, the seller incurs at least the cost of the individual

varieties contained in the bundle (Definition 5 (ii)).

Definition 6. Incremental costs are defined as ∆c : 2N × N → Z. The seller incurs the cost

increase ∆c(S, r) from selling a copy of a package T due to its cost connection to package S,

when she sells r − 1 copies of other packages cost-connected to S.

Note that ∆c({j}, r) := ∞ for r > Ωj , for all j ∈ N . Negative incremental costs, i.e., cost

savings, are allowed. The total cost of a supply partition is obtained by adding all incremental

costs associated with the bundles contained in the partition. For each bundle, the cost function

graph defines the set of cost-connected bundles.

Definition 7. The cost of selling a partition of supply (package multiset) k ∈ K is defined as

C0 : K → Z+. Given a cost function graph and associated incremental costs,

C0(k) =
∑
S∈2N

∆c(S, [rS ]), with rS :=
∑

S′∈R−
0 (S)

kS′ .

Note that rS counts the copies of cost-connected packages (the predecessors of S) that are

sold in the partition k. To illustrate the cost aggregation, suppose a single copy of bundle S is

sold and nothing else. Then the cost of S is obtained by adding all incremental costs ∆c(S′, 1) of

cost-connected bundles S′, i.e., the cost of S is
∑

S′∈R−
0 (S)∆c(S

′, 1). We often use the implicit

summation ∆c(R−
0 (S), r). Although negative incremental costs are allowed, we assume that

costs are non-negative, i.e., C0(k) ≥ 0 for all k ∈ K, and we make the following monotonicity

assumption on incremental costs.

Assumption 1 (Increasing incremental cost). For any package S ∈ 2N and for all r ≥ 1, it

holds that ∆c(S, r) ≤ ∆c(S, r + 1).

Intuitively, the more packages cost-connected to some package S are sold, the more costly

it becomes to sell an additional cost-connected package. This assumption is similar to one of

increasing marginal costs, but note that, due to potential cost interdependencies, marginal costs

can only be defined as a function of the entire partition sold. The following observations further

illustrate the properties of CFGs.

Observation 1.

(a) Node N is a source and a CFG may contain other sources (Definition 5 (i)).

(b) Node S ∈ 2N is a sink iff |S|= 1 (Definition 5 (i) and (ii)).

(c) A CFG is weakly connected (Definition 5 (ii)).

In Example 1, we show the simplest cost function graph and associated incremental cost

functions with two distinct items A and B. However, the expressive power of cost function

graphs is better illustrated with at least three items A, B, and C, where the costs of packages

with overlapping subsets of varieties may be connected. For example, the cost savings of grouping

ABC together may depend on the number of units of package AB that are sold simultaneously

in the market. We illustrate this in Example 2.
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A B

AB

(a) Cost function graph

r ∆c(A, r) ∆c(B, r) ∆c(AB, r)

1 1 1 -1
2 2 2 0

(b) Incremental cost

Figure 2: Cost function graph for two goods A and B and incremental costs

Example 1 (Continued). The seller’s preferences can be summarized by the incremental costs

in Fig. 2b and the CFG in Fig. 2a. Note that with only two goods, there exists only one valid

CFG, and we illustrate more complex graphs in Example 2. For legibility, we write multisets

not as vectors but in set notation.

The total cost is given, as defined in Definition 7, as C0({A}) = 1, C0({B}) = 1, C0({AB}) =
1+1−1, C0({A,A}) = C0({B,B} = 1+2, C0({A,B}) = 1+1, C0({A,AB}) = C0({B,AB}) =
1 + 2 + 1− 1, C0({A,B,AB} = 1+ 2 + 1 + 2− 1, and C0({AB,AB}) = 1 + 2 + 1 + 2− 1 + 0.

Example 2. There are three goods N = {A,B,C} that can be bundled as any package S ∈ 2N .

We consider two different cost function graphs, shown in Fig. 3a and Fig. 4a. In Fig. 3a,

each bundle S, |S| ≥ 2, when allocated to a buyer, creates a cost corresponding to its own

incremental cost function and costs related to its subsets of a single variety. With this type

of packaging cost, the overall allocation of each variety affects the cost of related (superset)

bundles. However, packaging costs are independent between bundles that consist of more than

one item. This is illustrated in Fig. 3b with the cost of selling the partition (or multiset)

{A,B,C,AB,AC,BC,BC,ABC}. In Fig. 4a, each bundle S, |S| ≥ 2, when allocated to a

AB AC BC

A B C

ABC

(a) CFG

ABC

r

∆c(ABC, r)

AB

r

∆c(AB, r)

AC

r

∆c(AC, r)

BC BC

r

∆c(BC, r)

A AB
AC ABC

r

∆c(A, r)

B AB
BC BC ABC

r

∆c(B, r)

C AC
BC BC ABC

r

∆c(C, r)

(b) Incremental cost functions

Figure 3: CFG and corresponding assignment on incremental cost functions of partition
{A,B,C,AB,AC, BC,BC,ABC}

buyer, creates a cost corresponding to its own incremental cost function and costs related to all

of its subsets. Thus, the packaging cost of the sale of the package ABC also depends on how

many units of AB (and AC and BC) are being sold. Incremental cost functions are weakly

increasing, so the more of, e.g., AB is allocated, the more expensive it becomes to sell bundle

ABC (see Fig. 4b).

The two cost function graphs in the example above illustrate the most extreme cases of no

cost interdependence and cost interdependence between all available bundles. More generally,
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A B C

AB AC BC

ABC

(a) Complete CFG

ABC

r

∆c(ABC, r)

AB ABC

r

∆c(AB, r)

AC ABC

r

∆c(AC, r)

BC BC
ABC

r

∆c(BC, r)

A AB
AC ABC

r

∆c(A, r)

B AB
BC BC ABC

r

∆c(B, r)

C AC
BC BC ABC
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Figure 4: Complete CFG and corresponding assignment on incremental cost functions of parti-
tion {A,B,C,AB,AC, BC,BC,ABC}

the cost function graphs that satisfy Definition 5 allow a wide range of cost connections and

associated packaging costs.

2.3 Demand, Supply, and Equilibrium

We define demand, supply, and Walrasian equilibrium. In our market, the equilibrium prices

are package-linear, i.e., the price of a partition is linear in the contained packages. The seller

chooses how to partition and allocate their supply of individual varieties to buyers, i.e., she

chooses a feasible multiset (anonymous partition) k ∈ K of packages to sell.

An allocation of items in Ω is defined as an assignment π = (π(l))l∈[L]0 of these items

between the buyers and the seller, such that
∑

l∈[L] π(l) = k and π(0) = Ω−k⋆. Recall that the

operator ⋆ unpacks k into a vector of individual varieties. π(l) is the package multiset assigned

to agent l under the allocation π, where π(l) may be the empty set, and π(0) ̸= ∅ means that

the items in π(0) are not sold. For all agents l ∈ [L]0, the demand correspondences (or supply

correspondence for the seller), and indirect utilities, are defined as Dl(p) := argmaxk∈K u
l(k, p)

and V l(p) := maxk∈K u
l(k, p). An allocation π is efficient if, for every allocation π′, it holds that∑

l∈[L] V
l(π(l))−C0(k) ≥

∑
l∈[L] V

l(π′(l))−C0(k′), where k =
∑

l∈[L] π(l) and k′ =
∑

l∈[L] π
′(l).

Given an efficient allocation π, the market value is defined as V (Ω) :=
∑

l∈[L] V
l(π(l))−C0(k).

A package-linear pricing Walrasian equilibrium is a tuple (p∗, π∗), composed of a package-

linear pricing function p∗(k) =
∑

S∈2N kSp
∗(S), k ∈ Z2n

+ , with p∗ : 2N → R and an allocation

π∗ such that
∑

l∈[L] π
∗(l) ∈ D0(p∗) and π∗(l) ∈ Dl(p∗) for every buyer l ∈ [L]. Were the

pricing function linear in varieties, the package-linear Walrasian equilibrium would reduce to

the standard linear pricing Walrasian equilibrium.

3 Walrasian Equilibrium

In this section, we formulate the social welfare maximization problem and characterize Wal-

rasian equilibria via linear programming duality. The novelty in our results lies in that the seller’s

preferences are over supply partitions. Due to their nested structure of cost functions and graphs,

we can summarize these preferences by the characteristic function (Lemma 2) and derive the
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pricing function. We then develop our main results starting with Proposition 2, a characteri-

zation of competitive equilibrium prices, which exhibit a nested price structure related to the

seller’s partition preferences. Our characteristic function dual relates prices and marginal gains

from sale in Corollary 1, and we confirm the important properties of uniformity, anonymity, and

package-linearity in Corollary 2. In Proposition 3, we verify that this pricing function supports

a competitive equilibrium allocation. Moreover, in Proposition 4, we show that the integrality

of the LP solution is equivalent to the existence of a package-linear competitive equilibrium,

generalizing the previous literature (e.g., Bikhchandani & Mamer (1997), Bikhchandani & Os-

troy (2002)) to incorporate partition preferences. Finally, we derive closed-form expressions

for the characteristic function of complete graphs (describing the seller’s partition preferences)

in Proposition 5. Our results on equilibrium existence and set-cover submodularity follow in

Section 4.

As is standard in quasi-linear environments, the welfare theorems hold, stated in the following

proposition. We provide a proof in Appendix A.1 only for completeness.

Proposition 1. If (p∗, π∗) is a package-linear Walrasian equilibrium, π∗ is an efficient alloca-

tion. If π′ is another efficient allocation, (p∗, π′) is also a package-linear Walrasian equilibrium.

3.1 Social Welfare Maximization

To formulate the social welfare maximization problem, we must aggregate the buyers’ and

the seller’s preferences. As a first step, we reformulate the indirect utilities. The buyers’ value

function can be rewritten using binary variables x(S, q, l) ∈ {0, 1}, indicating whether fictitious

unit-demand agent q is assigned bundle S or not. We rewrite the indicator vectors in Definition 4

as the constraint
∑

S∈2N x(S, q, l) ⩽ 1, ∀q ∈ [Q]. Then, the buyers’ indirect utility is given by

V l(k) = max
{x(S,q,l),S∈2N ,q∈[Q]}

∑
q∈[Q],S∈2N

vl(S, q)x(S, q, l)−
∑
S∈2N

kSp(S)

s.t. x(S, [Q], l) ≤ kS ∀S, x(2N , q, l) ≤ 1 ∀q, x(S, q, l) ∈ {0, 1} ∀S, q
(1)

We denote by x(S, l) the vector (x(S, l, q))q∈[Q], by x(q, l) the vector (x(S, l, q))S∈2N , and by

x(l) the vector (x(l))S∈2N ,q∈[Q].

For the seller, we also introduce a binary variable y(S, r). This variable indicates if partition

k invokes the assignment of step r of the incremental cost function associated with bundle S.

The cost function graph is encoded in the constraint in the seller’s cost function in Definition 7,

given by rs =
∑

S′∈R−
0 (S) kS′ . Formally, y(S, r) = 1 if r ≤ rs and zero otherwise. We assume

that there exists a finite number of steps such that ∆c(S, r) < ∞. We denote this number by

R := maxS,r{r : ∆c(S, r) <∞} and [R] := {1, . . . , R}.

Lemma 1. If package S appears in the seller’s chosen partition, then one unit step on every

incremental cost function corresponding to a successor of S, i.e., S′ ∈ R+(S), must be assigned

y(S′, ·) = 1.

Proof. This follows from the definitions of rS in Definition 7 and of y(S, r) above.
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Lemma 1 implies that the assignment on steps of an incremental cost function ∆c(S, ·) is

limited by the minimum number of steps with finite height among all incremental cost functions

∆c(S′, ·) of the successors S′ ∈ R+
0 (S) of S. We write the seller’s indirect utility as

V 0(k) = max
k∈K

∑
S∈2N

kSp(S)−
∑

S∈2N ,r∈[rs]

∆c(S, r)y(S, r) s.t. rs =
∑

S′∈R−
0 (S)

kS′ , y(S, r) = 1 ∀r ≤ rs

Given a partition k, y(S, r) for S ∈ 2N and r ∈ N is uniquely defined. We also show that the

converse holds, i.e., each CFG allocation y(S, r) for S ∈ 2N and r ∈ N can be mapped onto a

unique partition of packages k. We formally state this in the lemma below and in Algorithm 1.

The proof is given in Appendix A.2.

Lemma 2. Given a cost function graph G, there exists a linear one-to-one mapping between an

incremental cost function assignment {y(S, r)}S∈2N ,r≤R and a corresponding package multiset

k. This mapping, the “characteristic function” ϕG : Z2n×R
+ → Z2n, is inductively defined by

Algorithm 1.

Intuitively, Algorithm 1 starts with a source S in the graph, for which kS = y(S, [R]). Then,

it selects some node S for which all predecessors have already been visited. Because the pre-

decessors have been visited, we can compute kS = y(S, [R]) −
∑

S′∈R−(S) kS′ . Then, it selects

another node for which all predecessors have been visited, and so forth. For brevity, we write

ϕGS ({S, [R]}S∈2N ) as ϕGS ({S, [R]}). Crucially, the mapping is linear.

Algorithm 1: Construct partition from CFG assignment

Input: Cost function graph G = (V,A) with assignment (y(S, r))S∈V,r≤R

Initialize list of successfully visited nodes V := ∅.
while V ̸= V do

Select a node S ∈ V \ V such that V \ V ∩R−(S) = ∅ (all predecessors of S have been visited)

Set kS = y(S, [R])−
∑

S′R−(S) kS′ and V = V ∪ S
end

return (kS)S∈2N = (ϕGS ({y(S, [R])}))S∈2N = ϕG({y(S, [R])})

Using Lemma 2, we rewrite the seller’s problem as follows.

V 0(k) = max
{y(S,r),S∈2N ,r∈[R]}

∑
S∈2N

kSp(S)−
∑

S∈2N ,r∈[R]

∆c(S, r)y(S, r)

s.t. kS = ϕGS ({y(S, r)}) ∀S, y(S, r) ∈ {0, 1} ∀S, r
(2)

With the reformulation of the buyers’ and the seller’s utility maximization problem given in

Eqs. (1) and (2), we can now state the social welfare maximization problem. The objective is to

find the partition k ∈ K of supply between buyers that maximizes the sum of the buyers’ and

the seller’s utilities, and thus the buyers’ values minus the seller’s costs. Using the characteristic

function ϕG from Lemma 2, we can write the problem as an allocation problem with only binary

decision variables and substitute kS . The welfare maximization problem is named “SWP”. For

all constraints, we write short ∀S for ∀S ∈ 2N , ∀q for ∀q ∈ [Q], ∀r for ∀r ∈ [R], and ∀l for
∀l ∈ [L], and we use implicit summation.
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SWP

max
{x(S,q,l),y(S,r),S∈2N ,q∈Q,r∈R}

∑
S,q,l

vl(S, q)x(S, q, l)−
∑
S,r

∆c(S, r)y(S, r)


s.t.

x(2N , q, l) ≤ 1 ∀q, l (3)

x(S, [Q], [L])− ϕGS ({y(S, r)}) ≤ 0 ∀S (4)

x(S, q, l), y(S, r) ∈ {0, 1} ∀S, q, r, l (5)

Prices in the objective function cancel because, in equilibrium, the demand and supply of bun-

dles must be equal. Relaxing the integrality constraints, we write the integer program as the

linear program “SWLP” with the corresponding dual variables listed next to the constraints.

The feasible set of the SWLP is a non-empty, convex polytope, and therefore an optimal solution

always exists; by strong duality, an optimal solution for its dual “DSWLP” also exists.

SWLP

max
{x(S,q,l),y(S,r),S∈2N ,q∈Q,r∈R}

∑
S,q,l

vl(S, q)x(S, q, l)−
∑
S,r

∆c(S, r)y(S, r)


s.t.

x(2N , q, l) ≤ 1 ∀q, l [b(q, l)] (6)

x(S, [Q], [L])− ϕGS ({y(S, r)}) ≤ 0 ∀S [p(S)] (7)

y(S, r) ≤ 1 ∀S, r [d(S, r)] (8)

x(S, q, l), y(S, r) ≥ 0 ∀S, q, r (9)

Note that the constraint x(S, q, l) ≤ 1 is implied by the first constraint and can thus be

omitted. The corresponding dual problem “DSWLP” is constructed using the characteristic

function dual ψG({p(S)}) of ϕG({y(S, r)}). Formally, let ϕG({y(S, r)}) = Φy⊺, where Φ is a

2n×2n-matrix determined by Algorithm 1, and y =
(
y(S, [R])

)
S∈2N , i.e., a row vector each entry

of which contains the total quantity allocated on incremental cost function ∆c(S, ·). Thus, we

have ϕGS ({y(S, r)}) = ΦSy
⊺, i.e., the row corresponding to package S of Φ multiplied by y⊺. We

define the characteristic function dual ψG({p(S)}) = Φ⊺p⊺, where p = (p(S))S∈2N .

DSWLP

min
{b(q,l),p(S),d(S,r),S∈2N ,q∈[Q],r∈[R],l∈[L]}

∑
q,l

b(q, l) +
∑
S,r

d(S, r)


s.t.

b(q, l) + p(S) ≥ vl(S, q) ∀S, q, l [x(S, q, l)] (10)

d(S, r)− ψG
S ({p(S)}) ≥ −∆c(S, r) ∀S, r [y(S, r)] (11)

b(q, l), d(S, r), p(S) ≥ 0 ∀S, q, r, l (12)
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The pricing function is given as part of the DSWLP solution: p(S) is the value of the last

“unit” of a given bundle S the seller assigns to some buyer. The dual variable b(q, l) is the

surplus of fictitious agent q of buyer l, and d(S, r) is the seller’s incremental surplus from selling

a bundle with a cost connection to S assuming a corresponding incremental cost of ∆c(S, r).

We establish in Proposition 3 that p(S) is indeed a competitive equilibrium pricing function.

This pricing function takes into account the interactions of a package S with the aggregate

partition k the seller supplies. The price of the supplied partition, as well as the price for any

buyer demanding a package multiset, is given by p(k) =
∑

S∈2N kSp(S). We formally state the

price structure in Proposition 2 below. We define r̃S := argmaxr{y(S, r) : y(S, r) > 0}, the last

step on incremental cost function corresponding to bundle S, on which a positive quantity is

allocated, and r̃ := minS∈2N r̃S .

Lemma 3. For all S ∈ 2N and for all S′ ∈ R+(S), it holds that r̃S ≤ r̃S′.

Proof. As noted in Lemma 1, the assignment y(S, r) = 1 of a step on some incremental cost

function ∆c(S, ·) requires the assignment of some step r′ such that y(S′, r′) = 1 on every incre-

mental cost function ∆c(S′, ·), if S has a cost connection to S′, i.e., S′ ∈ R+(S). Therefore, for

any given partition, on any incremental cost function corresponding to S′, there must be at least

as many steps with y(S′, ·) = 1 as on any incremental cost function corresponding to S.

3.2 Competitive Equilibrium and its Pricing Function

The linear programming formulation permits us to characterize the equilibrium pricing func-

tion, which exhibits a structure intimately related to the seller’s partition preferences. The proof

proceeds with an alternative, more complex formulation of SWLP. All proofs for this section are

given in Appendix A.2.

Proposition 2. Fixing any r ≤ R, it holds that p(S) ≤ ∆c(R+
0 (S), r) + d(R+

0 (S), r) for all

S ∈ 2N . For all S ∈ 2N and r ≤ r̃S, it holds that

p(S) = ∆c(R+
0 (S), r) + d(R+

0 (S), r).

The above proposition characterizes prices as a function of the incremental costs associated

with the bundles that are allocated to buyers, i.e., those assigned on cost function steps r ≤ r̃S .

The price of a bundle S nests the incremental costs of all cost-connected bundles and the

associated dual variables d(S, r).

Furthermore, we characterize the characteristic function dual ψG
S ({p(S)}). Recall that the

characteristic function ϕG maps the assignment on the incremental cost functions {y(S, r)}S∈2N ,r≤R

to the corresponding supply partition. Its dual ψG
S maps the set of prices {p(S)}S∈2N to the

price gain from combining the individual items in S together in package S, given all other cost

connections. We formalize this in the following corollary.

Corollary 1. For all r ≤ r̃S , it holds that ψ
G
S ({p(S)}) = p(S)− (∆c(R+(S), r) + d(R+(S), r)).

For the final unit of a bundle allocated, r̃S , we must have ψG
S ({p(S)}) ≤ ∆c(S, r̃S +1), as for

a price gain strictly greater than ∆c(S, r + 1), the seller prefers to sell an additional bundle S.
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The pricing function is a generalization of the uniform pricing rule for a market with multiple

packages of different varieties and it can be shown to support an appropriate allocation as a

competitive equilibrium.

Proposition 3. The pricing function p∗(k) =
∑

S∈2N kSp
∗(S), k ∈ Z2n

+ , where {p(S)}S∈2N
is part of an optimal solution of DSWLP, supports the allocation {x∗(S, q, l)}S∈2N ,q∈[Ql],l∈[L],

ϕG({y∗(S, r)}), given by an optimal solution of SWLP, as a package-linear pricing Walrasian

equilibrium.

Because the seller has preferences over partitions, the proof requires additional techniques,

compared to the standard LP literature, e.g., Bikhchandani & Mamer (1997), and relies on

Proposition 2, Corollary 1, and Lemma 5 in the appendix.

The next corollary follows directly from Proposition 2 and Proposition 3 and confirms the

desired properties of equilibrium prices.

Corollary 2. The equilibrium pricing function p(k) is uniform, anonymous, and package-linear.

Furthermore, we show that a Walrasian equilibrium exists if and only if it is characterized

by an optimal solution of SWLP, further generalizing results of Bikhchandani & Mamer (1997)

and Bikhchandani & Ostroy (2002).

Proposition 4. A package-linear pricing Walrasian equilibrium exists if and only if any optimal

solution to SWP is also an optimal solution to SWLP, i.e., the optimum values of SWP and

SWLP coincide.

To our knowledge, our Proposition 4 is first to accommodate preferences over partitions of

supply in the primal-dual characterization and existence equivalence of Walrasian equilibrium.

Despite the generality of these partition preferences, their nested structure facilitates the pricing

properties given in Corollary 2. Uniformity, anonymity, and linearity (in packages) are highly

desirable in applications for reasons of fairness and transparency.

We also note that competitive equilibrium prices are not necessarily unique. This creates

flexibility for the seller to choose from a set of equilibrium prices and to specify additional rules

to do so.8 A set of lowest equilibrium prices for all packages may not exist as demonstrated

in Example 1 below, but the seller may choose the lowest prices according to a lexicographic

ordering.

In general, cost function graphs can be represented by their characteristic function, which

can be computed using Algorithm 1. For complete graphs, we also derive a closed-form solution

of the characteristic function. First, we first define “levels” within a graph.

Definition 8. Let x, y ∈ 2N . Then x ⊂t y := {x | x ⊆ y, |y|−|x|= t}. y is said to be r levels

above x, and x is r levels below y.

Similarly, we define x ⊂≥t y and x ⊂≤t y, whereby |y|−|x|= t is replaced with |y|−|x|≥ t

and |y|−|x|≤ t, respectively. x ⊃0 y implies x = y. In a complete graph, each bundle has a cost

connection to all of its subsets. This can be achieved with a minimal number of edges with each

package S pointing only to its subsets of size |S|−1. An example is shown in Fig. 4a.

8Modern LP solvers can return the set of all integer solutions.
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Figure 5: Bundles assigned on incremental cost functions and buyers’ values with allocations

Proposition 5. Let G be a complete cost function graph. Then its characteristic function is

given by ϕGS ({y(S, r)}) =
∑n−|S|

t=0

∑
r,S′⊃tS

(−1)ty(S′, r) for S ∈ 2N .

Using LP duality, we also derive a closed-form solution for the characteristic function dual.

Corollary 3. Let G be a complete cost function graph. Then its characteristic function dual

is given by ψG
S ({p(S)}) =

∑|S|−1
t=0

∑
S′⊂tS

(−1)tp(S′) for S ∈ 2N .

Complete cost function graphs may be especially relevant in the procurement of factor inputs.

By way of example, suppose that if services A and B are delivered by the same provider, the

buyer incurs cost savings, and similarly for services A and C. However, if services B and C are

delivered by the same provider, additional costs arise, e.g., because at least either B and or C

are crucial to the production and the contingency risk of the provider. If all three services A,

B, and C are delivered by the same provider, the cost savings of A and B, A and C, and the

additional costs of pairing B and C enter the cost function, plus an additional term to account

for the interaction of A, B, and C.

Example 1 (Continued). Compared to the previous Example 1, suppose there are two addi-

tional unit-demand agents labeled 3 and 4. All values are given in Fig. 5b. The seller has cost

savings if she sells one unit of A and one unit of B as a package; hence, agent 4 obtains {AB}
(breaking the tie between an alternative allocation of A to agent 4 and B to agent 1). For

the second unit of A and B, the seller is indifferent between selling items A and B separately

and selling them as a bundle, so agent 1 and agent 3 win. The assignment of bundles sold

on incremental cost functions is shown in Fig. 5a. The cost of supplying bundle AB consist

of the cost of supplying A, B, and the packaging cost (savings) ∆c(AB, 1). One can verify

that the set of equilibrium prices is given by (p(A), p(B), p(AB) ∈ {(4, 5, 9), (5, 4, 9), (5, 5, 9),
(5, 5, 10)}, which all support the unique equilibrium allocation. From Proposition 2 we have

that, e.g., p(AB) = p(A) + p(B) + ∆c(AB, 1) + d(AB, 1), where d(AB, 1) can be either 0 or 1.

4 Equilibrium Existence

We now establish sufficient conditions for the existence of package-linear Walrasian equilibria,

and we show a duality between revenue-maximizing and utility-maximizing sellers (Section 4.2).

Market supply is restricted to one unit per variety, and we assume that the seller’s partition pref-

erences only comprise (weakly) negative packaging costs and buyers have (weakly) superadditive
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values, that is, they view items as weak complements. We prove that under these conditions,

there exists a package-linear Walrasian equilibrium, using an ascending auction (Section 4.1).

Given a market supply of N , supply partitions are described by vectors k ∈ {0, 1}2n . Each

buyer has a valuation vl : 2N → Z+ and the seller’s marginal cost of selling a package S ∈ 2N

is given by c0 : 2N → Z+. These marginal costs can be made up of any arbitrary incremental

cost function and cost function graphs as described in Section 2.2. The aggregate cost of selling

a partition k is given by C0(k) =
∑

S∈2N c
0(S)kS . We also write a partition now simply as

k = {S1, . . . , Sk} where St ∈ 2N , t = 1, . . . , k, St1 ∩ St2 = ∅ for all St1 ̸= St2 , and
⋃k

t=1 St ∈ 2N .

An allocation π = (π(0), π(1), . . . , π(L)) is also interpreted as a partition of supply, where π(l)

is removed if it is the empty set. Utilities, demand and supply correspondences, and indirect

utilities remain unchanged.

Assumption 2. The buyers’ valuations are superadditive, i.e., for all disjoint S1, S2 ∈ 2N and

for all buyers l ∈ [L], vl(S1) + vl(S2) ≤ vl(S1 ∪ S2).

Superadditivity is the most general concept of complementarity, which contains supermod-

ularity and gross complements (Samuelson 1974, Sun & Yang 2014).

Assumption 3. The seller’s marginal costs are subadditive, i.e., for all disjoint S1, S2 ∈ 2N ,

c0(S1) + c0(S2) ≥ c0(S1 ∪ S2).

We show the existence of package-linear Walrasian equilibrium by construction with a mod-

ified version of the ascending auction by Sun & Yang (2014) (henceforth SY), and we extend

this modified ascending auction to strictly generalize the auction by SY. We state the theorem

and give the proof in Section 4.1.

Theorem 1. If the buyers’ value functions satisfy superadditivity and the seller’s marginal cost

function satisfies subadditivity, there exists a package-linear Walrasian equilibrium.

4.1 Constructing an Equilibrium

In each round of the ascending auction, the seller states her supply, and buyers state their

demand at current prices. If a package is overdemanded (defined below), the price of this package

increases by one in the next round. The procedure stops as soon as no package is overdemanded.

We let p(t, S) denote the price of bundle S ∈ 2N at time t. The seller and the buyers behave

straightforwardly. Buyer l bids straightforwardly with respect to his values vl if, at all times

t ∈ Z+ and for any prices p(t), he demands Sl(t) ∈ Dl(p(t)) = argmaxS∈2N
{
vl(S)− p(t, S)

}
,

where Sl(t) = ∅ when ∅ ∈ Dl(p(t)). That is, in each round, he demands a bundle that

maximizes his utility given the current prices. We denote aggregate demand by partition

kD(t) := {S1(t), . . . , SL(t)}, which can also be seen as a vector kD ∈ Z2n
+ with each element

counting how many buyers demand a package S ∈ 2N . The seller behaves straightforwardly

with respect to her cost C0 if, at any time t ∈ Z+ and at any prices p(t), she chooses a supply

partition k(t) ∈ D0(p(t)) = argmaxk∈K
∑

S∈k
(
p(t, S)− c0(S)

)
. We say that a package S is

overdemanded at time t iff kDS (t) > kS(t), where kD(t) and k(t) are the aggregate demand and

the supply reported at time t, respectively. The procedure is described in Algorithm 2.
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Algorithm 2: Ascending auction

Seller states initial reserve prices c0 setting t = 0 and initial prices p(0, S) = c0(S) ∀S ∈ 2N .
All buyers l ∈ [L] report a demanded bundle Sl(0) and the seller chooses a supply partition k(0).
while some package S is overdemanded at time t do

Set p(t+ 1, S) = p(t, S) + 1 for all overdemanded bundles S, i.e., those with kDS (t) > kS(t).
Set p(t+ 1, S′) = p(t, S′) for all bundles S′ that are not overdemanded at t.
Set t = t+ 1.

end

The auction terminates at t = t∗. Every bundle S ∈ Sl(t∗) is allocated to buyer l at price p(t∗, S).
for any S ∈ k(t∗) not demanded by any buyer at p(t∗) do

if p(t∗, S) = c0(S) then S remains with the seller;
else

S is allocated at price p(t∗, S) to a buyer who demanded and was among the last to forfeit S
in a previous round.

end

end

return Walrasian equilibrium prices p(t∗, S), S ∈ 2N and equilibrium allocation π

Proposition 6. If all buyers bid straightforwardly, the ascending auction given by Algorithm 2

terminates in a package-linear pricing Walrasian equilibrium after a finite number of rounds.

The proof is given in Appendix A.3 and Theorem 1 follows then directly from Proposition 6.

The ascending auction specified in Algorithm 2 is modified from the ascending auction in SY

by the participation of the seller with partition preferences. We also extend the procedure to

fully generalize the ascending auction of SY in Section 4.3. First, however, we demonstrate the

difference and relation of a (value-based) revenue-maximizing seller, as it appears in SY, and

our (cost-based) utility-maximizing seller.

4.2 Revenue vs. Utility Maximization

The market studied by SY includes a revenue-maximizing seller whose preferences are sym-

metric to buyers. The seller’s superadditive value function v0 : 2N → Z+ is called a “reserve

price” and she obtains the market price of all sold bundles plus the value of the unsold bundle

as revenue.9 In contrast, our seller has preferences over partitions expressed through a cost

function. The cost of supplying several bundles is the sum of their marginal costs, and the

seller’s utility is defined as the sum of obtained prices minus total cost.

In the following, we provide an equivalence characterization between value-based revenue

maximization and cost-based utility maximization. This equivalence implies fundamentally dif-

ferent preferences in the model of SY and ours, and it reveals a new class of preferences that may

be of independent interest. We let Sc denote the complement for any set S ∈ 2N , i.e., Sc = N \S
and define the set function dual (see, e.g., Gul & Stacchetti (2000) or Fujishige (2005)). All

proofs are deferred to Appendix A.3.

Definition 9. For any S ∈ 2N , given a set function f : 2N → R with f(∅) = 0, define the

transformation g(f, S) = f(N)− f(Sc). g(f, ·) is called the set function dual of f .

9With bundling, true reserve prices differ. Consider the supply of A and B, which can be bundled as AB. The
seller’s values are v(A), v(B), and v(AB), respectively. The seller chooses to sell A alone only if p(A) + v(B) >
v(AB) and p(A) + v(B) > p(AB). Thus, her true reserve price for A is v(AB)− v(B).
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Note that g(f,N) = f(N). With the set function dual, we are equipped to formalize the

relationship between revenue maximization and utility maximization.

Proposition 7. Given a value function v0 : 2N → Z+ with v0(∅) = 0, the objective of maximiz-

ing revenue is equivalent to maximizing utility, where the marginal costs c0 : 2N → Z+ are given

by the dual of v0, and the total cost of any given partition k is C0(k) = c0
(⋃

S∈k S
)
.

We introduce a new notion of submodularity to further characterize the revenue-maximizing

seller’s cost function.

Definition 10 (Set-cover submodularity). Given a finite set N , a function f : 2N → R is

set-cover submodular if ∀ S1, S2 ∈ 2N with S1 ∪ S2 = N ,

f(S1) + f(S2) ≥ f(S1 ∪ S2) + f(S1 ∩ S2).

If the inequality sign is reversed, f is set-cover supermodular, and if replaced with an equality

sign, f is set-cover modular. The following proposition makes the crucial connection between

superadditive and set-cover submodular functions.

Proposition 8. Given a superadditive (subadditive) function f : 2N → R, its dual g(f, ·) is

set-cover submodular (set-cover supermodular).

From Proposition 8 and Proposition 7 we have the following corollary.

Corollary 4. The revenue-maximizing seller’s marginal costs are set-cover submodular.

Set-cover submodularity is weaker than submodularity, because it is only required for every

two subsets of N , the union of which fully covers N . In particular, set-cover submodularity

does not imply subadditivity (unlike proper submodularity, which does imply subadditivity).

A set-cover submodular cost function can have strictly subadditive and strictly superadditive

elements, as shown in Example 3 below. A revenue maximizer only takes into account the set of

sold items, whereas a utility maximizer with an appropriately defined cost function cares about

the partition of sold items between buyers.

Example 3. The function v in Table 1 is superadditive and its dual c is set-cover submodular.

The dual c is strictly subadditive with respect to A and BC (2+3 > 4), but superadditive with

respect to items B and C (2 + 0 < 3).

A B C AB AC BC ABC

v 1 2 0 4 2 2 4
c 2 2 0 4 2 3 4

Table 1: Superadditive function v and set-cover submodular dual c

Although our seller’s preferences are fundamentally different from a value-based revenue

maximizer, we can generalize the ascending auction to incorporate agents with both types of

value and cost functions.
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4.3 The Extended Ascending Auction

In the extended auction, a revenue-maximizing seller as well as an additional seller with its

own supply, or an additional agent with partition preferences over the original seller’s supply,

participate. The revenue-maximizing seller surrenders her supply to the auctioneer and disguises

herself as a buyer in the auction, attempting to buy back her supply. Her bids serve as reserve

prices. In addition to potentially winning a bundle herself, she receives the price of every bundle

(of her original supply) sold to proper buyers. We consider a revenue-maximizing seller and an

auctioneer with partition preferences over the seller’s supply.10

Lemma 4. If the auctioneer’s marginal costs are zero, the extended ascending auction and the

ascending auction by SY terminate in the same allocation (up to ties).

Proposition 9. Suppose that the auctioneer’s marginal costs are zero and the extended ascending

auction starts at prices p(−1, S) = v0(S) − 1 ∀S ∈ 2N . Then, there exists a price path that is

identical in the extended ascending auction and in the ascending auction by SY, resulting in final

prices that support the same allocation in both auctions.

With non-zero marginal costs, the auctioneer can express additional preferences. Moreover,

the existence of a package-linear Walrasian equilibrium is also guaranteed in the extended as-

cending auction. Thus, Lemma 4 and Proposition 9 imply that our auction strictly generalizes

the ascending auction by SY. Example 5 in the appendix further illustrates that the extended

ascending auction can lead to different outcomes depending on the total cost function used, even

when marginal costs and values are dual to each other.

In the literature, the existence of a Walrasian equilibrium has been demonstrated for markets

with only substitutes (linear pricing) or only complements (non-linear pricing, cf. SY), and some

mixtures of substitutes and complements (cf. Sun & Yang (2006)), but not with preferences over

partitions. Subadditive cost functions are especially relevant in markets with a high degree of

fragmentation in which the auctioneer wishes to encourage bundle allocations. We also note

that weak superadditivity of values allows buyers to be interested in a single item only or to

have merely additive values.

5 Discussion

Implementation as a sealed-bid auction. Under the assumption of approximately compet-

itive behavior, the Product-Mix Auction Klemperer (2008, 2010, 2018) implements a competitive

equilibrium with uniform, competitive prices in markets for substitutes. The Bank of England

has been using this sealed-bid procedure to allocate loans to commercial banks against different

types of collateral since the financial crisis in 2007. Similarly, our market may be implemented as

a sealed-bid auction, assuming a large market with many buyers, in which all agents, including

the seller, behave non-strategically. Our buyer preferences are related to those of buyers in the

standard Product-Mix auction, where each buyer submits a finite list of “paired bids” bids to

10The variation of the market in which a second seller supplies an additional set of items that is disjoint from
the other seller’s supply is analogous, as long as items from the two sellers are not bundled together. If multiple
sellers participated in the auction, a surplus sharing rule would have to be defined.
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the auctioneer. This list of bids is equivalent to the aggregation of multiple unit-demand valua-

tions (reported truthfully), and our buyer preferences generalize such Product-Mix preferences

to incorporate packaged items. We note that, although with a small number of strategic buyers

efficiency is not guaranteed, if a large number of buyers for each package participate, our market

is asymptotically ex-ante efficient (Swinkels 2001).11

Our seller’s preferences also lend themselves as a bidding language, as the cost function

graph and incremental cost functions provide a tractable structure that can be submitted to

a clearing house or auctioneer. In general, in combinatorial allocation problems, there is no

hope of achieving better than exponential communication, even if agents truthfully report their

preferences (Nisan & Segal 2006). The aggregation of incremental costs significantly reduces

the communication in the context bundles, as cost savings or increments for the combination

of single varieties can be specified only for relevant bundles and omitted for those the seller is

indifferent about.

The seller’s demand type. If all agents have strong substitutes valuations and supply is

fixed, it is well known that a linear-pricing Walrasian equilibrium exists (Milgrom & Strulovici

2009). The notion of strong substitutes can be extended to packages using the concept of demand

types (Baldwin & Klemperer 2019). An agent’s demand type defines how demand may change

due to small price changes, i.e., the possible trade-offs between items (in our setup, bundles). A

valuation is strong substitutes if and only if it is concave and trade-offs are one-to-one.12 Our

buyers’ preferences correspond to aggregations of unit-demand agents with one-to-one trade-offs

and can thus be said to be “strong substitutes between packages”. However, for this analogy

between items and bundles to be complete, one would also require a fixed supply of bundles. In

our market, supply is given in terms of items, and the seller divides these items into packages.

Thus, in the context of package-linear pricing, her preferences are not strong substitutes between

packages, and a package-linear pricing Walrasian equilibrium may not always exist.

We illustrate this with Example 2 from Sun & Yang (2014) (also Beviá et al. (1999)). Three

buyers 1, 2, and 3 are interested in purchasing three items A, B, and C with values given in

Table 2. The seller’s costs are zero. Walrasian equilibrium does not exist, either with linear

pricing (Beviá et al. 1999) or with non-linear pricing (Sun & Yang 2014). All buyers demand

only one package, hence their valuations are strong substitutes between packages. However,

induced by an infinitesimal price change, the seller may wish to, e.g., sell partition {AB} in-

stead of {A,B}. Thus, the characterization of the seller’s “demand” type would contain the

vectors ±(1, 1, 0,−1, 0, 0, 0), where the entries correspond to the change in her supply of pack-

ages (A,B,C,AB,AC,BC,ABC) induced by an arbitrarily small price change. Therefore, the

seller’s demand type is not strong substitutes between packages.

11Standard technical assumptions like asymptotic environmental similarity are required to be satisfied for each
package separately. Related results have been shown by Cripps & Swinkels (2006) and Fan et al. (2003).

12Baldwin & Klemperer (2019) show that a valuation is strong substitutes iff it is concave and corresponds to a
strong substitutes demand type. A demand type is specified for quasi-linear utilities by a list of vectors describing
the directions in which demand could change due to an infinitesimal generic price change. A strong substitutes
demand type is defined by vectors with at most one +1 entry, at most one -1 entry, and no other non-zero entries.
For details, we refer to Baldwin & Klemperer (2019).
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∅ A B C AB AC BC ABC

Buyer 1 0 10 8 2 13 11 9 14
Buyer 2 0 8 5 10 13 14 13 15
Buyer 3 0 1 1 8 2 9 9 10

Table 2: Buyers’ valuations of bundles

6 Conclusion

In markets for bundled items, it is often natural for the seller to have preferences over parti-

tions of items between buyers. We analyze a competitive market in which such preferences are

modeled as incremental cost functions together with a graph that defines cost interdependencies.

We contribute the first characterization and existence results of anonymous and package-linear

Walrasian equilibrium prices in the presence of partition preferences. We also uncover a dual-

ity relation between revenue- and utility-maximizing sellers, introducing the class of set-cover

submodular valuations. Although our results are theoretical, we also aim to inspire new mar-

ket design applications in practice, especially in (near-)competitive environments. Our setting

allows the seller to express vastly richer preferences than described in the previous literature

and used in present-day auction design. The equilibrium prices we describe have a nested struc-

ture relating to the cost interdependencies specified by the seller, and ensuring transparency in

pricing between related bundles. Moreover, in combinatorial auctions in practice, this may ease

the construction of prices even for those bundles that were not bid for. Finally, our framework

of partition preferences may be of independent interest in other allocation problems, where the

distribution of goods, services, or matchings in the market matters.
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Appendix

A Proofs

A.1 Proofs for Section 2

Proof of Proposition 1. Let A denote the universe of all feasible allocations, i.e.,

A :=

π ∈ Z2n×|[L]0|
+ :

∑
l∈[L]

π(l) = k for some k ∈ K, and π(0) = Ω− k∗


(p∗, π∗) is a package-linear pricing Walrasian equilibrium, so for any buyer l ∈ [L] and any

allocation π′ ∈ A, we have

V l(π∗(l))−
∑

S∈π∗(l)

p∗(S) ≥ V l(π′(l))−
∑

S∈π′(l)

p∗(S)

Let
∑

l∈[L] π
∗(l) = k and

∑
l∈[L] π

′(l) = k′. We sum over l ∈ [L] and add and subtract the

seller’s cost

∑
l∈[L]

V l(π∗(l))− C0(k)−

∑
l∈[L]

V l(π′(l))− C0(k′)


≥

∑
l∈[L]

∑
S∈π∗(l)

p∗(S)− C0(k)−

∑
l∈[L]

∑
S∈π′(l)

p∗(S)− C0(k′)

 (13)

Because π∗ ∈ D0(p∗), we have, for all π′ ∈ A,∑
l∈[L]

∑
S∈π∗(l)

p∗(S)− C0(k) ≥
∑
l∈[L]

∑
S∈π′(l)

p∗(S)− C0(k′)

From Eq. (13), it follows that, for all π′ ∈ A,

∑
l∈[L]

V l(π∗(l))− C0(k)−

∑
l∈[L]

V l(π′(l))− C0(k′)

 ≥ 0

and so π∗ is efficient.

Now let π′ be an efficient allocation. Then V (Ω) =
∑

l∈[L] V
l(π′(l)) − C0(k′). It also holds

that V (Ω) =
∑

l∈[L] V
l(π∗(l)) − C0(k) because π∗ is efficient as part of the equilibrium. The

equilibrium is also buyer-optimal and seller-optimal, given prices. Thus, we obtain the following

two inequalities:

V l(p∗) ≥ V l(π′(l))−
∑

S∈π′(l)

p∗(S), for all l ∈ [L] and

∑
l∈[L]

∑
S∈π∗(l)

p∗(S)− C0(k) = V0(p∗) ≥
∑
l∈[L]

∑
S∈π′(l)

p∗(S)− C0(k′)

25



Suppose that one of these two inequalities were strict, then we would obtain

V (Ω) =
∑
l∈[L]

V l(π∗(l))− C0(k)

=
∑
l∈[L]

V l(π∗(l))−
∑

S∈π∗(l)

p∗(S) +
∑

S∈π∗(l)

p∗(S)

− C0(k)

=
∑
l∈[L]

V l(p∗) + V0(p∗)

> V l(π′(l))−
∑

S∈π′(l)

p∗(S) +
∑
l∈[L]

∑
S∈π′(l)

p∗(S)− C0(k′)

=
∑
l∈[L]

V l(π′(l))− C0(k′)

= V (Ω).

This is a contradiction, and consequently it holds that

V l(p∗) = V l(π′(l))−
∑

S∈π′(l)

p∗(S), for all l ∈ [L] and ,

V0(p∗) =
∑
l∈[L]

∑
S∈π′(l)

p∗(S)− C0(k′), i.e., π′ ∈ D0(p∗).

It follows that (p∗, π′) is also a package-linear pricing Walrasian equilibrium. □

A.2 Proofs for Section 3

Proof of Lemma 2. First, we show that given a cost function graph G, any incremental

cost function assignment (y(S, r))S∈2N ,r≤R maps into a unique vector (kS)S∈2N . To proof that

Algorithm 1 constructs a unique image from any permissible input, we demonstrate that (a)

Algorithm 1 terminates after a finite number of steps, (b) each node S is successfully visited

at some point, and (c) the time at which S is successfully visited is irrelevant. The mapping is

linear by the definition of kS in the algorithm.

(a) and (b) follow because Definition 5(i) implies that there are no cycles in G. Thus, as

long as V ̸= V , there exists some S ∈ V \ V for which the if-condition is false. Consequently,

all nodes are added to V at some point. It is without loss of generality to require that the

algorithm does not get stuck in a trivial loop, i.e., it does not select a sequence of nodes that

allow no successful visit and are skipped and revisited indefinitely. (c) follows because once the

“if condition” in Algorithm 1 is false for a given node S, the set of nodes A ∈ V : ∃(A...S)
remains unchanged. Once S could be successfully visited, it does not matter when it is actually

selected for the successful visit, i.e., other nodes may be selected first.

The reverse mapping is straightforward. Given a cost function graph G, a partition k =

(kS)S∈2N is mapped to the following incremental cost function assignment: for all S ∈ 2N ,

y(S, rS) = 1 ∀rS ≤
∑

A:∃(A...S) kA and y(S, rS) = 0 ∀r >
∑

A:∃(A...S) kA. □

Proof of Proposition 2. In the social welfare maximization problem, prices are nested in the

26



dual characteristic function. To avoid this difficulty, we will use a more complex but equivalent

formulation of the SWP. Recall that whenever a step on the incremental cost function ∆c(S, ·)
is allocated, a step on every incremental cost function ∆c(S′, ·) for all S′ ∈ R+(S) must be also

allocated (see also Lemma 3). Thus, on each incremental cost function associated with package S,

some steps can be assigned that are directly linked to the allocation S and, in addition, some steps

may be allocated that are related to the allocation of some package S′ ∈ R−(S). To make this

distinction, we denote a cost function step as r(S′, S) if it is allocated on cost function ∆c(S′, ·)
due to the allocation of package S (to a buyer). With this definition,

∑
r(S,S) y(S, r(S, S)) = kS .

In the original SWLP, the cost function graph was encoded in the characteristic function

ϕG. In the subsequent alternative formulation SWLP′, the cost function graph is encoded in

the equality constraints which require that, for each incremental cost step corresponding to the

allocation of package S, cost steps on all incremental cost functions corresponding to successors

R+(S) are also allocated. Recall that S ∈ R+
0 (S). In the notation of dual variables we write,

e.g., d(S′, S, r(S′, S)) as d(S′, S, r) for brevity.

SWLP′

max
{x(S,q,l),y(S′,r(S′,S)),r(S′,S)∈[R]

∀S∈2N ,S′∈R+
0 (S)),q∈[Q]}

∑
S,q,l

vl(S, q)x(S, q, l)−
∑

S,S′∈R+
0 (S),r(S′,S)

y(S′, r(S′, S)∆c(S′, r(S′, S))


s.t.

x(2N , q, l) ≤ 1 ∀q, l b(q, l) (14)

x(S, [Q], [L])−
∑

r(S,S) y(S, r(S, S)) ≤ 0 ∀S [p(S)] (15)

y(S′, r(S′, S)) ≤ 1 ∀S, S′ ∈ R+
0 (S), r(S

′, S) [d(S′, S, r)] (16)

y(S, r(S, S))− y(S′, r(S′, S)) = 0 ∀S, S′ ∈ R+(S), r(S′, S) [u(S′, S, r)] (17)

x(S, q, l), y(S, r(S′, S)) ≥ 0 ∀S, S′ ∈ R+
0 (S), q, r(S

′, S) (18)

We formulate the dual of SWLP’ as follows.

DSWLP′

min
{b(q,l),p(S),d(S′,S,r),u(S′,S,r}

∑
q,l

b(q, l) +
∑

S,S′∈R+
0 (S),r(S′,S)

d(S′, S, r)


s.t.

b(q, l) + p(S) ≥ vl(S, q) ∀S, q, l [x(S, q, l)] (19)

−p(S) + d(S, S, r) + u(R+(S), S, r) ≥ −∆c(S, r(S, S)) ∀S, r(S, S) [y(S, r(S, S))] (20)

d(S′, S, r)− u(S′, S, r) ≥ −∆c(S′, r(S′, S)) ∀S, S′ ∈ R+(S), r(S′, S) [y(S′, r(S′, S))] (21)

b(q, l), d(S′, S, r), p(S) ≥ 0, u(S′, S, r) ∈ R ∀S, S′ ∈ R+(S), q, r(S′, S) (22)

Substituting Eq. (21) into Eq. (20) and rearranging, we obtain p(S) ≤
∑

S′∈R+
0 (S) d(S

′, S, r)+

∆c(S′, r(S′, S)). On any cost function step that is allocated a positive quantity y(S′, r(S′, S)) >
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0 complementary slackness implies that constraints (20) and (21) hold with equality. While

r(S′, S) designates which package is allocated on step r of incremental cost function ∆c(S′, ·),
the order in which packages are allocated on incremental cost functions does not matter; it is

only the sum of all allocated incremental cost steps that determines the seller’s costs. Because

r(S′, S) could indeed be any of the steps on ∆c(S′, ·), on which a positive amount is allocated,

we can omit the specification of S and S′. The first statement of Proposition 2 holds then indeed

for any step r, and the second statement for all steps r on which a positive quantity is allocated,

i.e., all r ≤ r̃S . □

Observation 2. Complementary slackness from LP duality implies the following observations,

corresponding to the constraints in Eqs. (6) to (8), (10) and (11).

(i) If x(2N , q, l) < 1, then b(q, l) = 0 ∀q ∈ [Q], l ∈ [L]. (S1)

(ii) If x(S, [Q], [L])− ϕGS ({y(S, r)}) < 0, then p(S) = 0 ∀S ∈ 2N . (S2)

(iii) If y(S, r) < 1, then d(S, r) = 0 ∀S ∈ 2N , r ≤ R. (S3)

(iv) If x(S, q, l) ̸= 0, then b(q, l) = vl(S, q)− p(S) ∀S ∈ 2N , q ∈ [Q], l ∈ [L]. (D1)

(iv) If y(S, r) ̸= 0, then d(S, r) + ∆c(S, r) = ψG
S ({p(S)}) ∀S ∈ 2N , r ≤ R. (D2)

Lemma 5. If {x(S, q, l), y(S, r)} and {b(q, l), d(S, r), p(S)}, S ∈ 2N , q ∈ [Q], l ∈ [L], r ∈ [R], are

solutions to SWLP and DSWLP, respectively, the following facts hold.

(i)
∑

S′∈R−
0 (S) x(S

′, [Q], [L]) ≤ y(S, [R]), for all S ∈ 2N . (F1)

(ii) If p(S) > 0, then
∑

S′∈R−
0 (S) x(S

′, [Q], [L]) = y(S, [R]), for all S ∈ 2N . (F2)

(iii) If vl(S, q)− p(S) < maxS′ ̸=S{vl(S′, q)− p(S′), 0}, then x(S, q, l) = 0, for all S, q, l. (F3)

(iv) If maxS∈2N {vl(S, q)− p(S)} > 0, then x(2N , q, l) = 1, for all q ∈ [Q], l ∈ [L]. (F4)

(v) If ∆c(S, r) < ψG
S ({p(S)}), then y(S, r) = 1, for all S ∈ 2N , r ≤ R. (F5)

(vi) If ∆c(S, r) > ψG
S ({p(S)}), then y(S, r) = 0, for all S ∈ 2N , r ≤ R. (F6)

Proof of Lemma 5. (F1) is obtained by summing up the bundle S supply constraints from

SWLP. In particular, we sum over all S′ ∈ R−
0 (S). By definition of incremental cost functions,∑

S′∈R−
0 (S) YS′ =

∑
r∈[R] y(S, r) for any package S ∈ 2N .

To show (F2), first note the contrapositive of (S2): if p(S) > 0, x(S, [Q], [L])−ϕG({y(S, r)}) =
0 (> 0 is ruled out by the constraints Eq. (7) of the SWLP). We wish to sum these constraints

across all packages S′ ∈ R−
0 (S) of which some positive quantity is allocated, i.e., y(S′, r) > 0

for some step r. For y(S′, r) > 0, we can apply Proposition 2, and with C0(k) ≥ 0 ∀k ∈ K and

d(S, r) ≥ 0 ∀S, r it follows that p(S′) > 0 for all S′ ∈ R−
0 (S). Therefore, we can take the sum

of tight supply constraints corresponding to packages S′ ∈ R−
0 (S), noting that including those

packages S′ of which nothing is allocated, i.e., y(S′, r) = 0 for all r (and thus also x(S′, q, l) = 0

for all q, l), does not change the sum. Thus, (F2) follows.

(F3) is derived from (D1): Assume x(S, q, l) > 0 and x(S′′, q, l) > 0, S ̸= S′′. Then, by (D1),

vl(S, q)− p(S) = vl(S′′, q)− p(S′′) = b(q, l). So if vl(S, q)− p(S) < vl(S′, q)− p(S′) for some S′,

then x(S, q, l) = 0. Furthermore, b(q, l) ≥ 0 and b(q, l) ≥ vl(S, q) − p(S) by Eq. (12). Thus, if

vl(S, q) − p(S) < 0, then vl(S, q) − p(S) < b(q, l), and thus x(S, q, l) = 0. Together, we obtain

(F3).
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To show (F4), note that b(q, l) ≥ vl(S, q)−p(S) implies that, if maxS∈2N {vl(S, q)−p(S)} > 0,

then b(q, l) > 0. The contrapositive of (S1) then implies x(2N , q, l) = 1, and thus (F4). (F5)

follows by the contrapositive of (S3), as from the constraint d(S, r) ≥ ψG({p(S)})−∆c(S, r) it

follows that if ∆c(S, r) < ψG({p(S)}), then d(S, r) > 0 for any S ∈ 2N and r ∈ [R]. Finally,

if ∆c(S, r) > ψG({p(S)}), then it must be d(S, r) > ψG({p(S)}) − ∆c(S, r), because d(S, r) is

non-negative. Hence, the contrapositive of (D2) implies y(S, r) = 0, and therefore (F6). □

Proof of Corollary 1. From Proposition 2, we have p(S) = ∆c(R+
0 (S), r) + d(R+

0 (S), r). Sub-

stituting (D2) into Proposition 2, the first statement follows. The contrapositive of (F5) gives

y(S, r̃S + 1) = 0 ⇒ ∆c(S, r̃S + 1) ≥ ψG
S ({p(S)}). As y(S, r̃S) = 1, we can substitute (D2) and

the second statement follows. □

Proof of Proposition 3. Assume the allocation {x(S, q, l), y(S, r)} and prices {p(S)} are solutions
of SWLP and DSWLP as defined above. By Lemma 5, conditions (F1) - (F6) hold. In the

following, we show that, together with (S1) - (D2) and the constraints of SWLP and DSWLP,

Lemma 5 implies that the prices {p(S)} support {x(S, q, l), y(S, r)} as a package-linear pricing

Walrasian equilibrium.

We prove that (a) there is no surplus improvement possible for any fictitious agents q and

any buyer l, (b) for a buyer who received a package multiset, no surplus improvement is possible

from reassigning elements of the multiset to different unit-demand agents, (c) that, given an

allocated supply partition and prices, the seller cannot improve her utility by allocating more or

less of a given package, and (d) that, given an allocated supply partition and prices, the seller

cannot improve her utility by choosing a different partition.

(a): If the surplus of unit-demand agent (q, l) is negative on all packages in its valuation

vl(S, q), (F3) ensures that this unit-demand agent is not assigned anything. (F4) implies that, if

a strictly positive surplus can be made on any bundle of some unit-demand agent, the maximum

quantity of one is allocated to that agent, and from (F3) it follows that only bundles that

maximize the surplus of agent (q, l) are allocated with a positive quantity. Eq. (6) ensures that

not more than the maximum quantity of one is allocated.

(b): If a buyer receives a multiset of items k, it is value-maximally assigned to his corre-

sponding unit-demand agents by Definition 4. Recall that the unpacking of multisets is not

allowed by our model assumptions. To see that at the given auction prices, a buyer has no

incentive to reassign elements of the allocated multiset between his unit-demand agents, let

k denote the multiset of items received by buyer l and let Ql denote the set of the corre-

sponding winning unit-demand agents, i.e., k =
(∑

q∈Ql x(S, q, l)
)
S∈2N

. The buyer’s utility

is given by ul(k, p) =
∑

q∈Ql,S(v
l(S, q) − p(S))x(S, q, l). Suppose that in an alternative as-

signment x̃(l) ̸= x(l) such that
(∑

q∈Q̃l x̃(S, q, l)
)
S∈2N

= k, which gives strictly higher utility,

i.e., ũ(k, p) =
∑

q∈Ql,S(v
l(S, q) − p(S))x̃(S, q, l) > u(k, p). Then, there exist at least two unit-

demand agents i, j ∈ Q̃, for which 1 = x̃(S̃, q, l) ̸= x(S̃, q, l) = 0, (q, S̃) = (i, S̃i), (j, S̃j) and

0 = x̃(S, q, l) ̸= x(S, q, l) = 1, (q, S) = (i, Si), (j, Sj). Moreover, vl(S̃i, i) − p(S̃i) + vl(S̃j , j) −
p(S̃j) > vl(Si, i) − p(Si) + vl(Sj , j) − p(Sj) = b(i, l) + b(j, l). However, by Eq. (10), we must

have vl(S, q) − p(S) ≤ b(q, l) for all S ∈ 2N , a contradiction. Thus, no additional surplus can
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be generated by shifting allocations between winning unit-demand bidders. Moreover, no ad-

ditional surplus can be generated by allocating to non-winning unit-demand agents, as, by the

contraposition of (F4) we must have p(S) ≥ vl(S, q) for all S ∈ 2N , for all q ∈ [Q] \ Q̃. Thus,

ũ(k, p) ≤ u(k, p).

(c): If a step in the incremental cost function ∆c(S, ·) is allocated, i.e., y(S, r) > 0, then

the contrapositive of (F6) implies ψG({p(S)}) ≥ ∆c(S, r). Together with Corollary 1 we have

p(S) ≥ (d(R+(S), r) + ∆c(R+(S), r))+∆c(S, r), i.e., the seller always sells package S at a weakly

positive surplus. Furthermore, if p(S) > 0, it follows by (F2) that
∑

S′∈R−
0 (S) x(S

′, [Q], [L]) =

y(S, [R]), for all S ∈ 2N , i.e., the amount of all packages with cost connection to S sold equals

y(S, [R]) and no package assigned on some incremental cost function goes to waste.

Now we show that, if a positive surplus can be made on some incremental cost function

step r corresponding to package S, then it is assigned y(S, r) = 1. Suppose p(S) > ∆c(S, r) +

d(R+(S), r)+∆c(R+(S), r), i.e., a strictly positive surplus is made on package S (recall d(S, r) ≥
0 for all S, r). Then, we have

d(S, r) = d(R+
0 (S), r) + ∆c(R+

0 (S), r)−
(
d(R+(S), r) + ∆c(R+(S), r)

)
−∆c(S, r)

≥ p(S)−
(
d(R+(S), r) + ∆c(R+(S), r)

)
−∆c(S, r)

> 0

By the contrapositive of (S3), d(S, r) > 0 implies that y(S, r) = 1.

We also show that, if a loss would be made by assigning step r corresponding to package

S, then y(S, r) = 0. Note that the loss is compared to not assigning the items in S at all, or

compared to assigning the items contained in S as a different partition (with elements that are

strict subsets of S). Thus, the shadow prices d(S, r), which capture potential gains in these

subsets, appear in the following equation. Let p(S) < d(R+(S), r) + ∆c(R+(S), r) + ∆c(S, r),

i.e., assigning package S is not profitable at the given prices. For contradiction, suppose y(S, r) >

0. Then, Corollary 1 applies, and

ψG({p(S)}) = p(S)−
(
d(R+(S), r) + ∆c(R+(S), r)

)
< d(R+(S), r) + ∆c(R+(S), r) + ∆c(S, r)−

(
d(R+(S), r) + ∆c(R+(S), r)

)
= ∆c(S, r)

Then, by (F6) we must have y(S, r) = 0.

(d) We claim that, given a partition of supply that is a solution to SWLP, the seller cannot

improve her utility by choosing a different partition of supply. To see this, recall Lemma 2, which

states that the mapping from the assignment on incremental cost functions (y(S, r))S∈2N ,r≤R

to a package multiset (kS)S∈2N is one-to-one. In (c), we have shown that the seller cannot

improve her surplus given the assignment on incremental cost functions, given the dual prices.

By Lemma 2, the resulting partition of supply is unique and also optimal for the seller. □

Proof of Proposition 4. Let OSWP (OSWLP, ODSWLP) denote the value of an optimal solution

to SWP (SWLP, DSWLP), respectively. First, suppose OSWP = OSWLP. Then, there exists
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{x(S, q, l), y(S, r)} as an optimal solution to SWP and SWLP, and {x(S, q, l), y(S, r)} is efficient.

By Proposition 3, the dual variables {p(S)} of DSWLP support this allocation as a package-

linear pricing Walrasian equilibrium.

Now suppose that there exists an equilibrium, i.e., prices {p(S)} ≥ 0 that support {x(S, q, l),
y(S, r)} as an equilibrium allocation. By Proposition 1, the allocation is efficient. Let b(q, l) :=

vl(S, q) − p(S) for all q ∈ [Q], l ∈ [L] : x(S, q, l) > 0, and let d(S, r) := ψG
S ({p(S)}) − ∆c(S, r)

for all S ∈ 2N , r ≤ r̃S : y(S, r) > 0. The dual variables d(S, r), S ∈ 2N , r ≤ r̃S , are defined

recursively by Corollary 1: for j ∈ N , we have ψG
S ({p(j)}) = p(j), so, by Proposition 2, d(j, r) :=

p(j) − ∆c(j, r) for all j ∈ N, r ≤ R. Given d(j, r), one can go on to define d(S, r) for all

S ∈ N−(j), j ∈ N , etc. The d(S, r) are the seller’s surplus on each individual supply step, and

the b(q, l) are the surplus of each unit-demand agent. Because {p(S)} are Walrasian equilibrium

prices, it must be that the surpluses are positive, i.e., d(S, r), b(q, l) ≥ 0. Together with their

definitions, this implies that b(q, l), d(S, r), and p(S) are feasible in DSWLP.

We now show that the seller’s revenue
∑

S p(S)YS is equivalent to the sum of the seller’s rev-

enue corresponding to each incremental cost function,
∑

S,r:y(S,r)=1 ψ
G
S ({p(S)}). Using Lemma 6,

we have ∑
S,r:y(S,r)=1

ψG
S ({p(S)}) =

∑
S,r:y(S,r)=1

p(S)−
(
d(R+(S), r) + ∆c(R+(S), r)

)
Moreover, recall that the quantity assigned on an incremental cost function ∆c(S, ·) equals the
sum of all packages sold that have a cost connection to S, i.e.,

∑
r y(S, r) =

∑
S′∈R−

0 (S) YS′ =

YS +
∑

S′∈R−(S) YS′ . Thus, we further write

∑
S,r:y(S,r)=1

ψG
S ({p(S)}) =

∑
S

p(S)YS + F, where

F :=
∑
S

p(S)

 ∑
S′∈R−(S)

YS′

−
∑
S

(
d(R+(S), r) + ∆c(R+(S), r)

) ∑
S′∈R−

0 (S)

YS′


Using Proposition 2, we substitute for p(S)) and obtain

F =
∑
S

(
d(R+

0 (S), r) + ∆c(R+
0 (S), r)

) ∑
S′∈R−(S)

YS′


−
∑
S

(
d(R+(S), r) + ∆c(R+(S), r)

) ∑
S′∈R−

0 (S)

YS′


=
∑
S

(d(S, r) + ∆c(S, r))

 ∑
S′∈R−(S)

YS′


−
∑
S

 ∑
S′∈R+(S)

d(S′, r) + ∆c(S′, r)

YS

The term F is equal to zero because of symmetry: the sum of the products of each node with
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the sum of its predecessors is equal to the sum of the products of each node with its successors.

Because we are taking the sum across all nodes, it does not matter in which direction we traverse

the directed graph. Thus, we have shown that
∑

S p(S)YS =
∑

S,r:y(S,r)=1 ψ
G
S ({p(S)}).

Finally, efficiency of the package-linear Walrasian equilibrium (cf. Proposition 1) implies that

the allocation {x(S, q, l), y(S, r)} is optimal in SWLP. By strong duality, OSWLP = ODSWLP

holds. Thus, we have

OSWLP = ODSWLP

(1)

≤
∑
q,l

b(q, l) +
∑
S,r

d(S, r)

(2)
=

∑
S,q,l:x(S,q,l)=1

(vl(S, q)− p(S)) +
∑

S,r:y(S,r)=1

(ψG
S ({p(S)})−∆c(S, r))

(3)
=

∑
q,l,S

vl(S, q)x(S, q, l)−
∑
S,r

∆c(S, r)y(S, r)

(4)
= OSWP

(1) follows from the objective function of DSWLP. (2) follows by definition of b(q, l) and d(S, r)

above. (3) follows because
∑

S,q,l:x(S,q,l) p(S) =
∑

S YSp(S). Finally, (4) follows from the defini-

tion of SWP. Overall, OSWLP ≤ OSWP . It also holds that OSWLP ≥ OSWP because any solution

of SWP is feasible in SWLP, and the claim follows. □

Lemma 6. The sets x ⊆ z ∈ 2N , and a number q with |x|≤ q ≤ |z| are given. Let R := {y ∈
2N |x ⊆ y ⊆ z, |y|= q}. Then, |R|=

(|z|−|x|
q−|x|

)
.

Proof. This is a standard combinatorics problem. First, note that q − |x| items can be added

to x such that y contains q items. These items also need to be different from those contained in

x, and they need to be contained in z. Hence, there are |z|−|x| different items, of which q − |x|
many can be added to x. This is possible in

(|z|−|x|
q−|x|

)
different ways.

Proof of Proposition 5. Let W ⊆ S ⊆ S′ ∈ 2N , and let y(S, S′, t,W ) denote the amount

allocated on the incremental cost function ∆c(S, ·) due to the cost connection of the allocated

bundle S′ ⊃t W , t levels above W . Let dist(x, y) := ||x|−|y|| for any x, y ∈ 2N . We first

establish a series of facts.

Fact (1). Given any reference supply set W ⊆ S, we can write the amount allocated on incre-

mental cost function ∆c(S, ·) as

∑
q

y(S, r) =

n−|W |∑
t=dist(S,W )

∑
S′⊃tW

y(S, S′, t,W ).

Fact (2). Given S, S′,W , let r := dist(S,W ) and t := dist(S′,W ). By Lemma 6 above,

there exist
(
t
r

)
incremental cost functions ∆c(S, ·) relative to ∆c(W, ·), on which the amount

y(S, S′, t,W ) is allocated.
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Fact (3). y(S, S′, t,W ) does not depend on S. If a step on the incremental cost function

∆c(S′, ·) is allocated, then a step on each incremental cost function S ⊆ S′ is allocated. Thus,

the allocation of bundles on incremental cost functions in the graph “between” W and S′ due

to the allocation of bundle S′ has to be the same amount.

Fact (4). For any t ≥ 1, we have, by the binomial theorem,
∑t

z=0

(
t
z

)
(−1)z = 0.

Using the facts above (references in the equation below), we have

n−|S|∑
t=0

∑
r

∑
S′⊃tS

(−1)ty(S′, r)

=

n−|S|∑
t=0

∑
S′⊃tS

(−1)t
∑
r

y(S′, r)

(1)
=

n−|S|∑
t=0

∑
S′⊃tS

(−1)t
n−|S|∑

t=dist(S′,S)

∑
S′′⊃tS

y(S′, S′′, t, S)

=

n−|S|∑
t=0

∑
S′⊃tS

(−1)t
n−|S|∑
z=t

∑
S′′⊃zS

y(S′, S′′, z, S)

(2),(3)
=

n−|S|∑
t=0

(−1)t
n−|S|∑
z=t

(
z

t

) ∑
S′′⊃zS

y(·, S′′, z, S)

(4)
=

n−|S|∑
t=0

∑
S′′⊃tS

y(·, S′′, t, S)

t∑
z=0

(−1)z
(
t

z

)
=

∑
S′′⊃0S

y(·, S′′, 0, S)

0∑
t=0

(−1)t
(
0

t

)
= y(·, S, 0, S)
= ϕGS ({y(S, r)})

□

A.3 Proofs for Section 4

Proof of Proposition 6. The proof proceeds by analogy with Sun & Yang (2014), but the

detailed arguments differ. The auction terminates at some time t∗, because buyers’ values are

finite, i.e., demand ceases at some point. The empty package is always priced at zero.

Let p∗ = p(t∗) and let Sl∗ = Sl(t∗). Furthermore, let k∗ = k(t∗) ∈ D0(p∗) denote the

supply set in D0(p∗) that is chosen at time t∗ by the seller. First, we establish an allocation

π∗ such that (p∗, π∗) constitutes a package-linear Walrasian equilibrium. Because at p∗ no

package is overdemanded, for any buyer l ∈ [L] with Sl∗ ̸= ∅, his demand Sl∗ must be in k∗. If⋃
l∈[L] S

l∗ = N holds, let π∗(l) = Sl∗ for all l ∈ [L] and π∗(0) = ∅. Then (p∗, π∗) is a package-

linear Walrasian equilibrium. If
⋃

l∈[L] S
l∗ ⊂ N , there is at least one package B in the chosen

supply set k∗ which is not demanded by any buyer at time t∗. By analogy with SY, B is called

a squeezed-out package. We distinguish multiple cases:

Case 1: p∗(B) = c0(B). The final price of bundle B is still fixed at the starting price, so B

was never overdemanded. If a buyer demanded it in some earlier round, this buyer demands now

a different, more profitable package. Let k∗
0 = {B ∈ k∗ | p∗(B) = c0(B) and B ̸= Sl∗ for all l ∈
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[L]} be the set of all squeezed-out packages. Let π∗(0) =
⋃

B∈k∗
0
B and allocate π∗(0) to the

seller at zero cost. Let K∗
0 denote the universe of all partitions of the items contained in k∗

0.

Because k∗ ∈ D0(p∗), we have∑
B∈γ

[
p∗(B)− c0(B)

]
≤

∑
B∈k∗

0

[
p∗(B)− c0(B)

]
= 0

for all γ ∈ K∗
0. Hence, the seller is indifferent between selling π∗(0) or not.

Case 2: p∗(B) > c0(B). Package B was demanded by some buyer in an earlier round.

Denoting by t the last round in which B was demanded by some buyer l, B may be allocated

to buyer l at the current price p∗(B) by the auction rule. Thus, we need to demonstrate that

it is still utility-maximizing for buyer l to receive package B at the current price. By the

auction rule, we must have V l(p(t)) = ul(B, p(t)) = vl(B)− p(t, B) ≥ 1 and p∗(B) = p(t, B) or

p∗(B) = p(t, B) + 1. Thus, we have for buyer l, who is allocated the squeezed-out package B,

ul(B, p∗) = vl(B)− p∗(B) ≥ 0 (23)

Now two sub-cases need to be distinguished:

Case 2A: If Sl∗ = ∅, assign buyer l the squeezed-out bundle, i.e., π∗(l) = B. Sl∗ ∈ Dl(p∗)

and Sl∗ = ∅ imply that V l(p∗) = 0. By definition of V l we have V l(p∗) ≥ ul(B, p∗). Together

with Eq. (23) this implies ul(B, p∗) = 0, and hence π∗(l) ∈ Dl(p∗).

Case 2B: If Sl∗ ̸= ∅, assign buyer l what he demanded at time t∗ and the squeezed-out

bundle, i.e., π∗(l) = Sl∗ ∪B. Because the seller chose a supply set k∗ ∋ {Sl∗, B}, we have

p∗(Sl∗)− c0(Sl∗) + p∗(B)− c0(B) ≥ p∗(π∗(l))− c0(π∗(l)). (24)

Superadditivity of l’s utility, subadditivity of the seller’s cost, and Sl∗ ∈ Dl(p∗) imply

vl(π∗(l)) ≥ vl(Sl∗) + vl(B) (25)

c0(π∗(l)) ≤ c0(Sl∗) + c0(B) (26)

vl(Sl∗)− p∗(Sl∗) ≥ vl(π∗(l))− p∗(π∗(l)). (27)

From Eqs. (24) and (26) follows

p∗(Sl∗) + p∗(B) ≥ p∗(π∗(l)). (28)

Then, using equation Eq. (28), Eq. (25), and Eq. (23) (in this order), we obtain

vl(π∗(l))− p∗(π∗(l)) ≥ vl(π∗(l))−
[
p∗(Sl∗) + p∗(B)

]
≥

[
vl(Sl∗)− p∗(Sl∗)

]
+
[
vl(B)− p∗(B)

]
≥ vl(Sl∗)− p∗(Sl∗).
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By Eq. (27), vl(π∗(l))− p∗(π∗(l)) = vl(π∗(l))−
[
p∗(Sl∗) + p∗(B)

]
= vl(Sl∗)− p∗(Sl∗), and thus

p∗(π∗(l)) = p∗(Sl∗) + p∗(B). (29)

Buyer l is therefore happy to receive bundle B in addition to his demanded bundle A∗
k, and pay

the price that is set for the bundle π∗(l). This process can be repeated for every squeezed-out

bundle B with p∗(B) > c0(B). Every buyer l who is not allocated any squeezed-out bundle

receives his demanded package, i.e., π∗(l) = Sl∗. k∗ is a partition of N chosen by the seller, and

thus (π∗(0), . . . , π∗(L)) is an allocation of N . By Eq. (29), the seller’s utility is∑
l∈[L]

[
p∗(π∗(l))− c0(π∗(l))

]
=

∑
A∈k∗

[
p∗(A)− c0(A)

]
= V0(p∗)

It follows that (p∗, π∗) is a package-linear pricing Walrasian equilibrium. □

Proof of Proposition 7. In SY, the seller’s supply correspondence is defined as

S(p) = argmax
k∈K

{∑
A∈k

p(A)

}

In our ascending auction the seller’s supply correspondence is defined as

D0(p) = argmax
k∈K

{∑
A∈k

(
p(A)− c0(A)

)}

In SY’s ascending auction, in holds that p(B) = v0(B) for any bundle B that is assigned to the

seller during the procedure and p(π(0)) = v0(π(0)). Hence, we have

S(p) = argmax
k∈K

 ∑
A∈k\B

p(A) + v0(B)


= argmax

k∈K

 ∑
A∈k\B

p(A) + v0(B)− v0(N)


= argmax

k∈K

 ∑
A∈k\B

p(A)− c∗(N \B)


= argmax

k∈K

 ∑
A∈k\B

p(A)− c∗

 ⋃
A∈k\B

A


c∗ is by definition the dual of v0, and c∗

(⋃
A∈k\B A

)
may be interpreted as the seller’s cost

function. Thus, part (i) and (ii) of the proposition follow. □

Proof of Proposition 8. To simplify notation, we write c∗(v0, S) as c∗(S) for any S ∈ 2N . Let

Sc
1, S

c
2 ∈ 2N and Sc

1 ∩ Sc
2 = ∅. Note that c∗(N) = v0(N) and Sc

1 ∩ Sc
2 = ∅ ⇔ S1 ∪ S2 = N .
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Because v0 is superadditive we have

v0(Sc
1 ∪ Sc

2) ≥ v0(Sc
1) + v0(Sc

2)

⇔ v0(N)− c∗((Sc
1 ∪ Sc

2)
c) ≥ 2v0(N)− c∗(S1)− c∗(S2)

⇔ c∗(S1) + c∗(S2) ≥ c∗(S1 ∪ S2) + c∗(S1 ∩ S2)

The proof for subadditive v0 is analogous. □

Proof of Lemma 4. With a revenue-maximizing seller, an allocation π is efficient if it holds for

every allocation π′ that ∑
l∈[L]0

[
vl(π(l))

]
≥

∑
l∈[L]0

[
vl(π′(l))

]
(30)

With a utility-maximizing seller, an allocation π is efficient if for every allocation π′ it holds

that ∑
l∈[L]

[
vl(π(l))− c0(π(l))

]
≥

∑
l∈[L]

[
vl(π′(l))− c0(π′(l))

]
(31)

SY’s ascending auction terminates in an efficient allocation π in the sense of Eq. (30). The

extended ascending auction terminates in an efficient allocation π in the sense of Eq. (31). If the

auctioneer’s marginal costs are zero, the efficient allocation in the extended ascending auction

is equivalent to the efficient allocation in the sense of Eq. (30): running the auction with the

set of buyers [L]′ = [L]+{0} = [L]0, Eq. (30) and Eq. (31) are equivalent and the claim follows. □

Proof of Proposition 9. Note that every conventional buyer bids identically in the ascending

auction and the extended ascending auction, up to ties. We split the revenue-maximizing seller

into 2n dummy buyers, denoted lS , S ∈ 2N . Define dummy lS ’s utility function as follows:

vlS (B) :=

{
v0(S) if B ⊇ S

0 otherwise

Each dummy lS has the highest bid on bundle S among all dummies because v0 is superadditive.

Let dummy lS demand bundle S whenever he weakly prefers S to any other bundle except the

empty set and let him demand the empty set when she weakly prefers to do so.

Let the extended ascending auction start at t = −1 with starting prices p(−1, S) = v0(S)−
1 ∀S ∈ 2N . Let two instances of each dummy lS participate. Dummies lS , S ∈ 2N each demand

bundle S. The auctioneer offers some supply set. Regardless of the non-dummy buyers’ demand,

each bundle S ∈ 2N is overdemanded in t = −1, so prices in t = 0 are increased by one. The

dummies all demand the empty set for all t = 0, 1, . . . , so if at some round t ≥ 0 the auction

ends with squeezed-out bundles, they can be assigned to the dummies if they were the last to

demand them. It is without loss of generality to stipulate that the squeezed-out bundles are

allocated to dummies in this case, and not to regular buyers who might have demanded them

at t = −1 as well. Then, in all rounds t = 0, 1, . . . , the supply correspondence and the demand
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correspondences are chosen to maximize identical utility functions in both auctions. Hence, the

supply and demand correspondences are identical in every round of both auctions, and it follows

that an identical price path resulting in the same allocation exists. □

B Additional examples

B.1 Packaging costs between identical items

If the seller has partition preferences over identical items (or if there are complementarities

between identical items on the buyers’ side), one can appropriately relabel items and adjust

valuations and costs.13 We illustrate this with an example.

Example 4. There are two items A and B supplied with ΩA = ΩB = 2. We wish to allow

the package {AA} to have its own price p(AA) not necessarily equal to 2p(A). The values

are given by v(A, q, l), v(B, q, l), v(AA, q, l), v(AB, q, l), v(AAB, q, l), l = 1, 2, q = 1, 2. We give

each unit of A its own index, i.e., N := {A1, A2, B}, and obtain the values v(A1, q, l),v(A2, q, l),

v(B, q, l), v(A1, A2, q, l), v(A1B,q, l), v(A2B, q, l), and v(A1A2B, q, l), where v(A1, q, l) = v(A2, q, l),

v(A1A2, q, l) = v(AA, q, l), v(A1B, q, l) = v(A2B, q, l) = v(AB, q, l) and v(A1A2B, q, l) =

v(AAB, q, l).

The seller submits incremental cost functions ∆c(A, ·), ∆c(B, ∆c(AA, ·), ∆c(AB, ·), and

∆c(AAB, ·), and a cost function graph defining the cost connections between these packages as

shown in Fig. B1. The transformed incremental cost functions ∆c(A1, ·), ∆c(A2, ·), ∆c(A1A2, ·),
∆c(A1B, ·), ∆c(A2B, ·), ∆c(A1A2B, ·) are such that ∆c(A1, 1) = ∆c(A, 1), ∆c(A2, 1) = ∆c(A, 2),

∆c(A1B, 1) = ∆c(AB, 1), ∆c(A2B, 1) = ∆c(AB, 2), ∆c(A1A2, 1) = ∆c(AA, 1), and ∆c(A1A2B, 1) =

∆c(AAB, 1). ∆c(B, ·) remains unchanged and all other ∆c(S, r) are set to ∞. The cost function

graph is adjusted as shown in Fig. B2, where outgoing edges are implied by the original graph

in Fig. B1.

A B

ABAA

AAB

Figure B1: CFG with package AA

A1 A2 B

A1A2 A1B A2B

A1A2B

Figure B2: Augmented CFG

Note that the auction prices must satisfy p(A) = min{p(A1), p(A2)}, p(AA) = p(A1A2), and

p(AB) = min{p(A1B), p(A2B)}. If A1 and A2 are both allocated to buyers, it must hold that

p(A1) = p(A2), and similarly for p(AB), because of v(A1, q, l) = v(A2, q, l) = v(A, q, l) and the

constraints of DSWLP.

13From a market design perspective, it is most efficient in terms of computational complexity to only relabel
those items on which partition preferences or complementarities are expected.
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B.2 Ascending auctions

Example 5. Buyers are labeled L1 to L6. Their values and the seller’s values v0 and dual

marginal costs c0 are given in Table B1. Table B2 details the ascending auction where the seller

maximizes revenue or, equivalently, utility based on the cost function C0(k) = c0
(⋃

S∈k S
)
, in

each round. Table B3 details the extended ascending auction where the seller maximizes utility

based on the cost function C̃0(k) =
∑

S∈k c
0 (S) in each round. If the seller maximizes revenue,

the two individual items A and B are allocated, e.g., to L1 and L3. If the seller maximizes

utility based on C̃0, bundle AB is allocated, e.g., to L5.

A B AB

v1 5 0 5
v2 5 0 5
v3 0 7 7
v4 0 7 7
v5 0 0 11
v6 0 0 11

v0 2 4 8
c0 4 6 8

Table B1: Values and
costs

current price supply set
demand

squeezed-outL1 L2 L3 L4 L5 L6

p(0) = (2, 4, 8) {AB} A A B B AB AB
p(1) = (3, 5, 9) {AB} A A B B AB AB
p(2) = (4, 6, 10) {AB} A A B B AB AB
p(3) = (5, 7, 11) {A,B} ∅ ∅ ∅ ∅ ∅ ∅ A,B

Table B2: Ascending auction

current price supply set
demand

squeezed-outL1 L2 L3 L4 L5 L6

p(0) = (4, 6, 8) {AB} A A B B AB AB
p(1) = (5, 7, 9) {A,B} ∅ ∅ ∅ ∅ AB AB
p(2) = (5, 7, 10) {AB} ∅ ∅ ∅ ∅ AB AB
p(3) = (5, 7, 11) {AB} ∅ ∅ ∅ ∅ ∅ ∅ AB

Table B3: Modified ascending auction

38


	Introduction
	The Competitive Market with Packaging Costs
	Preliminaries
	Agents and Preferences
	Demand, Supply, and Equilibrium

	Walrasian Equilibrium
	Social Welfare Maximization
	Competitive Equilibrium and its Pricing Function

	Equilibrium Existence
	Constructing an Equilibrium
	Revenue vs. Utility Maximization
	The Extended Ascending Auction

	Discussion
	Conclusion
	Proofs
	Proofs for sec:model
	Proofs for sec:walrasian-equilibrium
	Proofs for sec:equilibrium-existence

	Additional examples
	Packaging costs between identical items
	Ascending auctions


